Skip to main content

Salutary Contributions of Viruses to Medicine and Public Health

  • Chapter
  • First Online:
Viruses: Essential Agents of Life
  • 2873 Accesses

Abstract

Bacteriophages or phages are the viruses of domain Bacteria. Phages played key roles in the development of the fields of molecular biology and ­molecular genetics, plus are essential contributors to bacterial ecology and evolution. A subset of bacteriophages, furthermore, serve as serious public health menaces by encoding bacterial virulence factors. Notwithstanding the latter issue, a substantial fraction of phages are quite safe and phages generally are permissive to genetic manipulation. Consequently, phages may be employed in a number of technologies relevant to medicine and public health. As discussed in this chapter, these technologies include phage use as antibacterial agents (phage therapy); vaccines (both DNA and subunit); selectively cytotoxic complexes, including as anti-cancer agents; gene therapy vectors; bacterial identification and detection agents; and a means of discovery of small-molecule antibacterials. Phages also serve as a source of purified gene ­products for use in numerous tasks including as antibacterial agents (particularly lysins).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (1989) Selection for bacteriophage latent period length by bacterial density: a theoretical examination. Microb Ecol 18:79–88

    Article  Google Scholar 

  • Abedon ST (1990) Selection for lysis inhibition in bacteriophage. J Theor Biol 146:501–511

    Article  PubMed  CAS  Google Scholar 

  • Abedon ST (2006) Phage ecology. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 37–46

    Google Scholar 

  • Abedon ST (2008a) Bacteriophage ecology: population growth, evolution, and impact of bacterial viruses. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Abedon ST (2008b) Phages, ecology, evolution. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 1–28

    Chapter  Google Scholar 

  • Abedon ST (2009a) Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathog Dis 6:807–815

    Article  PubMed  Google Scholar 

  • Abedon ST (2009b) Phage evolution and ecology. Adv Appl Microbiol 67:1–45

    Article  PubMed  CAS  Google Scholar 

  • Abedon S (2011a) Phage therapy pharmacology: calculating phage dosing. Adv Appl Microbiol 77:1–40

    PubMed  Google Scholar 

  • Abedon ST (2011b) Bacteriophages and biofilms: ecology, phage therapy, plaques. Nova, New York

    Google Scholar 

  • Abedon ST (2011c) Envisaging bacteria as phage targets. Bacteriophage 1:228–230

    Article  Google Scholar 

  • Abedon ST (2011d) Lysis from without. Bacteriophage 1:46–49

    Article  PubMed  Google Scholar 

  • Abedon ST (2011e) Size does matter – distinguishing bacteriophages by genome length (and ‘breadth’). Microbiol Aust 32(2):95–96

    Google Scholar 

  • Abedon ST (2012a) Bacteriophages as drugs: the pharmacology of phage therapy. In: Borysowski J, Miêdzybrodzki R, Górski A (eds) Phage therapy current research and applications. Caister Academic Press, Norfolk

    Google Scholar 

  • Abedon ST (2012b) Phage therapy best practices. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, Oxfordshire UK, pp 256–272

    Google Scholar 

  • Abedon ST (2012c) Phages. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 1–5

    Google Scholar 

  • Abedon ST, LeJeune JT (2005) Why bacteriophage encode exotoxins and other virulence factors. Evolut Bioinform Online 1:97–110

    CAS  Google Scholar 

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    Article  PubMed  CAS  Google Scholar 

  • Abedon ST, Hyman P, Thomas C (2003) Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol 69:7499–7506

    Article  PubMed  CAS  Google Scholar 

  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011a) Phage treatment of human infections. Bacteriophage 1:66–85

    Article  PubMed  Google Scholar 

  • Abedon ST, Thomas-Abedon C, Thomas A, Mazure H (2011b) Bacteriophage prehistory: is or is not Hankin, 1896, a phage reference? Bacteriophage 1:174–178

    Article  PubMed  Google Scholar 

  • Balogh B, Jones JB, Iriarte FB, Momol MT (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11:48–57

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt TG, Wang I-N, Struck DK, Young R (2001) A protein antibiotic in phage Qβ virion: diversity in lysis targets. Science 292:2326–2329

    Article  PubMed  CAS  Google Scholar 

  • Blanford WJ, Brusseau ML, Jim Yeh TC, Gerba CP, Harvey R (2005) Influence of water chemistry and travel distance on bacteriophage PRD-1 transport in a sandy aquifer. Water Res 39:2345–2357

    Article  PubMed  CAS  Google Scholar 

  • Blasdel BG, Abedon ST (2012) Superinfection immunity. In: Mayloy S, Hughes K (eds) Brenner’s encyclopedia of genetics. Elsevier/Academic, Oxford

    Google Scholar 

  • Bradbury J (2004) My enemy’s enemy is my friend using phages to fight bacteria. Lancet 363:624–625

    Article  PubMed  Google Scholar 

  • Bull JJ, Otto G, Molineux IJ (2012) In vivo growth rates are poorly correlated with phage therapy success in a mouse infection model. Antimicrob Agents Chemother 56:949–954

    Article  PubMed  CAS  Google Scholar 

  • Burrowes B, Harper DR (2012) Phage therapy of non-wound infections. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 203–216

    Google Scholar 

  • Calendar R, Abedon ST (2006) The bacteriophages. Oxford University Press, Oxford

    Google Scholar 

  • Cao H, Molday RS, Hu J (2011) Gene therapy: light is finally in the tunnel. Protein Cell 2:973–989 http://www.ncbi.nlm.nih.gov/pubmed/22781675

    Article  PubMed  CAS  Google Scholar 

  • Chan BK, Abedon ST (2012) Phage therapy pharmacology: phage cocktails. Adv Appl Microbiol 78:1–23

    Article  PubMed  Google Scholar 

  • Christie GE, Allison HA, Kuzio J, McShan M, Waldor MK, Kropinski AM (2012) Prophage induced changes in cellular cytochemistry and virulence. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 33–60

    Google Scholar 

  • Clark J, Abedon ST, Hyman P (2012) Phages as theraeutic delivery vehicles. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 86–100

    Google Scholar 

  • Cox CR (2012) Bacteriophage-based methods of baterial detection and identification. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 134–152

    Google Scholar 

  • Curtright AJ, Abedon ST (2011) Phage therapy: emergent property pharmacology. J Bioanal Biomed S6:002. http://www.omicsonline.org/1948-593X/JBABM-S6-002.php?aid=2333

  • d′Hérelle F (2011) On an invisible microbe antagonistic to dysentery bacilli. Bacteriophage 1:3–5

    Article  Google Scholar 

  • de Siqueira RS, Dodd CER, Rees CED (2006) Evaluation of the natural virucidal activity of teas for use in the phage amplification assay. Int J Food Microbiol 111:259–262

    Article  PubMed  Google Scholar 

  • Gerba C (2006) Bacteriophage as pollution indicators. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 695–701

    Google Scholar 

  • Gill EE, Brinkman FS (2011) The proportional lack of archaeal pathogens: do viruses/phages hold the key? Bioessays 33:248–254

    Article  PubMed  Google Scholar 

  • Goodridge LD (2008) Phages, bacteria, and food. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 302–331

    Chapter  Google Scholar 

  • Goodridge LD (2010) Designing phage therapeutics. Curr Pharm Biotechnol 11:15–27

    Article  PubMed  CAS  Google Scholar 

  • Goodridge LD, Bisha B (2011) Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage 1:130–137

    Article  PubMed  Google Scholar 

  • Goodridge LD, Steiner T (2012) Phage detection as indication of fecal contamination. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 153–167

    Google Scholar 

  • Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11:58–68

    Article  PubMed  CAS  Google Scholar 

  • Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I (2012) Bacteriophages and their implications on future biotechnology: a review. Virol J 9:9

    Article  PubMed  Google Scholar 

  • Hendrickson H (2012) The lion and the mouse: how bacteriophages create, liberate, and decimate bacterial pathogens. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 61–75

    Google Scholar 

  • Hyman P, Abedon ST (2008) Phage ecology of bacterial pathogenesis. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 353–385

    Chapter  Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    Article  PubMed  CAS  Google Scholar 

  • Hyman P, Abedon ST (2012) Bacteriophages in health and disease. CABI Press, Wallingford

    Book  Google Scholar 

  • Kuhl S, Hyman P, Abedon ST (2012) Diseases caused by phages. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 21–32

    Google Scholar 

  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  PubMed  CAS  Google Scholar 

  • Letarov A (2012) Bacteriophages as a part of the human microbiome. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 6–20

    Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114

    Article  PubMed  Google Scholar 

  • Loc-Carrillo C, Wu S, Beck JP (2012) Phage therapy of wounds and related purulent infections. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 185–202

    Google Scholar 

  • Mahony J, McAuliffe O, Ross RP, van SD (2011) Bacteriophages as biocontrol agents of food pathogens. Curr Opin Biotechnol 22:157–163

    Article  PubMed  CAS  Google Scholar 

  • McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–618

    Article  PubMed  CAS  Google Scholar 

  • Merril CR (2008) Interaction of bacteriophages with animals. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 332–352

    Chapter  Google Scholar 

  • Monk AB, Rees CD, Barrow P, Hagens S, Harper DR (2010) Bacteriophage applications: where are we now? Lett Appl Microbiol 51:363–369

    Article  PubMed  CAS  Google Scholar 

  • Moradpour Z, Ghasemian A (2011) Modified phages: novel antimicrobial agents to combat infectious diseases. Biotechnol Adv 29:732–738

    Article  PubMed  CAS  Google Scholar 

  • Niu YD, Stanford K, McAllister TA, Callaway TR (2012) Role of phages in control of bacterial pathogens in food. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 240–255

    Google Scholar 

  • Olszowaska-Zaremba N, Borysowski J, Dabrowska J, Górski A (2012) Phage translocation, safety, and immunomodulation. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 168–184

    Google Scholar 

  • Paul VD, Sundarrajan S, Rajagopalan SS, Hariharan S, Kempashanaiah N, Padmanabhan S, Sriram B, Ramachandran J (2011) Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiol 11:195

    Article  PubMed  CAS  Google Scholar 

  • Rees CED, Dodd CER (2006) Phage for rapid detection and control of bacterial pathogens in food. Adv Appl Microbiol 59:159–186

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Mitchell MS, Donovan DM, Nelson DC (2012) Phage-based enzybiotics. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 217–239

    Google Scholar 

  • Siegel DL (2012) Clinical applications of phage display peptides. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 101–118

    Google Scholar 

  • Sinclair RG, Romero-Gomez P, Choi CY, Gerba CP (2009) Assessment of MS-2 phage and salt tracers to characterize axial dispersion in water distribution systems. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:963–971

    Article  PubMed  CAS  Google Scholar 

  • Summers WC (1999) Felix d’herelle and the origins of molecular biology. Yale University Press, New Haven

    Google Scholar 

  • Summers WC (2006) Phage and the genesis of molecular biology. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 3–7

    Google Scholar 

  • Voorhees K, Rees J, Wheelerr JH, Madonna A (2005) Apparatus and method for detecting microscopic living organisms using bacteriophage. http://www.faqs.org/patents/assignee/microphage-tm-incorporated/

  • Wagemans J, Lavigne R (2012) Phages and their hosts, a web of interactions – applications to drug design. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 119–133

    Google Scholar 

  • Wang I-N, Dykhuizen DE, Slobodkin LB (1996) The evolution of phage lysis timing. Evolut Ecol 10:545–558

    Article  Google Scholar 

  • Williams ML, LeJeune JT (2012) Phages and bacterial epidemiology. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 76–85

    Google Scholar 

  • Young R, Wang I-N (2006) Phage lysis. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 104–125

    Google Scholar 

Download references

Acknowledgement

Thanks to Jason Clark and Chris Cox for the input into those sections citing their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Abedon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abedon, S.T. (2012). Salutary Contributions of Viruses to Medicine and Public Health. In: Witzany, G. (eds) Viruses: Essential Agents of Life. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4899-6_19

Download citation

Publish with us

Policies and ethics