Skip to main content

Systems Biology of Pancreatic Cancer: The Role of Tumor-Microenvironment Communication in Development, Progression and Therapy Resistance

  • Chapter
  • First Online:
Systems Biology in Cancer Research and Drug Discovery

Abstract

Pancreatic cancer is an aggressive and highly lethal disease, with a reported 5-year survival of ∼5 %. It comprises the fourth most common cause of malignancy-related death in Western countries and the annual death rate due to this disease approximates its annual incidence rate, which is estimated to be ∼10 cases per 100,000 population. Although there have been some advancements in surgical techniques and adjuvant therapeutic regimens, the survival has not substantially improved in the past 30 years. Pancreatic cancer is characterized by late diagnosis, aggressive local invasion, early systemic dissemination and resistance to chemo- and radiotherapy. Therefore, a better understanding of cellular and molecular mechanisms governing the resistant phenotype of this devastating disease is urgently needed. Systems biology has emerged as one of the most promising approaches to understand the complexities of tumor-microenvironment interplay on a quantitative multi-scale level, i.e. by incorporating genomics, transcriptomics, proteomics, epigenomics and functional genomics studies. Integrative analysis of these data aims to dissect inter- and intracellular networks critically contributing to tumor progression and therapy resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PDAC:

Pancreatic ductal adenocarcinoma

PSC:

Pancreatic stellate cells

ECM:

Extracellular matrix

MDM2:

Murine double minute 2 protein

ENT1:

Equilibrative nucleoside transporter 1

ENT2:

Equilibrative nucleoside transporter 2

CNT1:

Concentrative nucleoside transporters

CNT2:

Concentrative nucleoside transporters

VEGF:

Vascular endothelial growth factor

References

  • Abdollahi A, Folkman J (2010) Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 13(1–2):16–28

    Article  CAS  PubMed  Google Scholar 

  • Abdollahi A, Hahnfeldt P, Maercker C et al (2004) Endostatin’s antiangiogenic signaling network. Mol Cell 13(5):649–663

    Article  CAS  PubMed  Google Scholar 

  • Abdollahi A, Hlatky L, Huber PE (2005) Endostatin: the logic of antiangiogenic therapy. Drug Resist Updat 8(1–2):59–74

    Article  CAS  PubMed  Google Scholar 

  • Abdollahi A, Schwager C, Kleef J et al (2007) Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 104(31):12890–12895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abedini MR, Qiu Q, Tan X et al (2004) Possible role of FLICE-like inhibitory protein (FLIP) in chemoresistant ovarian cancer cells in vitro. Oncogene 23(42):6997–7004

    Article  CAS  PubMed  Google Scholar 

  • Abiatari I, DeOliveira T, Kerkadge V et al (2009) Consensus transcriptome signature of perineural invasion in pancreatic carcinoma. Mol Cancer Ther 8(6):1494–1504

    Article  CAS  PubMed  Google Scholar 

  • Akakura N (2001) Significance of constitutive expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) protein in pancreatic cancer. Hokkaido Igaku Zasshi 76(6):375–384

    CAS  PubMed  Google Scholar 

  • Albert R, Jeong H, Barabasi AL et al (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    Article  CAS  PubMed  Google Scholar 

  • Almhanna K, Philip PA (2011) Defining new paradigms for the treatment of pancreatic cancer. Curr Treat Options Oncol 12(2):111–125

    Article  PubMed  Google Scholar 

  • Almog N, Ma L, Raychowdhury R et al (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69(3):836–844

    Article  CAS  PubMed  Google Scholar 

  • Alo PL, Amini M, Piro F et al (2007) Immunohistochemical expression and prognostic significance of fatty acid synthase in pancreatic carcinoma. Anticancer Res 27(4B):2523–2527

    CAS  PubMed  Google Scholar 

  • Apte MV, Haber PS, Applegate TL et al (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43(1):128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahina K, Tsai SY, Li P et al (2009) Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 49(3):998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahina K, Zhou B, Pu WT et al (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53(3):983–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmi AS, Wang Z et al. (2010) Proof of concept: network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol Cancer Ther 9(12):3137–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azorsa DO, Gonzales IM, Basu GD et al (2009) Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med 7:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bachem MG, Schneider E, Gross H et al (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115(2):421–432

    Article  CAS  PubMed  Google Scholar 

  • Bachem MG, Schunemann M, Ramadani M et al (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128(4):907–921

    Article  CAS  PubMed  Google Scholar 

  • Bailey JM, Swanson BJ, Hamada T et al (2008) Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 14(19):5995–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao B, Wang Z et al. (2012) Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila) 5(3):355–364

    Article  CAS  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  CAS  PubMed  Google Scholar 

  • Bardeesy N, DePinho RA (2002) Pancreatic cancer biology and genetics. Nat Rev Cancer 2(12):897–909

    Article  CAS  PubMed  Google Scholar 

  • Benjamin LE, Golijanin D, Itin A et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103(2):159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman AM, Pinedo HM, Peters GJ (2002) Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updat 5(1):19–33

    Article  CAS  PubMed  Google Scholar 

  • Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418(6900):823

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851

    Article  CAS  PubMed  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17):1901–1908

    Article  CAS  PubMed  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29(4):365–371

    Article  CAS  PubMed  Google Scholar 

  • Broxterman HJ, Lankelma J, Pindo HM et al (1996) How to probe clinical tumour samples for P-glycoprotein and multidrug resistance-associated protein. Eur J Cancer 32A(6):1024–1033

    Article  CAS  PubMed  Google Scholar 

  • Buchholz M, Biebl A, Neesse A et al (2003) SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res 63(16):4945–4951

    CAS  PubMed  Google Scholar 

  • Buchholz M, Kestler HA, Holzman K et al (2005) Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype. J Mol Med (Berl) 83(10):795–805

    Article  CAS  Google Scholar 

  • Cassiman D, Barlow A, Vander Borght S et al (2006) Hepatic stellate cells do not derive from the neural crest. J Hepatol 44(6):1098–1104

    Article  CAS  PubMed  Google Scholar 

  • Cervi D, Yip TT, Bhattacharya N et al (2008) Platelet-associated PF-4 as a biomarker of early tumor growth. Blood 111(3):1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Jurisica I, Do T et al (2011) Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res 71(8):3110–3120

    Article  CAS  PubMed  Google Scholar 

  • Chedotal A, Kerjan G, Moreau-Fauvarque C (2005) The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ 12(8):1044–1056

    Article  CAS  PubMed  Google Scholar 

  • Chelala C, Hahn SA, Whiteman HS et al (2007) Pancreatic expression database: a generic model for the organization, integration and mining of complex cancer datasets. BMC Genomics 8:439

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng N, Bhowmick NA, Chytil A et al (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24(32):5053–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilton JK (2006) Molecular mechanisms of axon guidance. Dev Biol 292(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Coghlin C, Murray GI (2010) Current and emerging concepts in tumour metastasis. J Pathol 222(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Zhang D, Jai Q et al (2009) Proteomic and tissue array profiling identifies elevated hypoxia-regulated proteins in pancreatic ductal adenocarcinoma. Cancer Invest 27(7):747–755

    Article  CAS  PubMed  Google Scholar 

  • Di Sano F, Fazi B, Citro G et al (2003) Glucosylceramide synthase and its functional interaction with RTN-1C regulate chemotherapeutic-induced apoptosis in neuroepithelioma cells. Cancer Res 63(14):3860–3865

    PubMed  Google Scholar 

  • Duner S, Lopatko Lindman J, Ansari D et al (2010) Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology 10(6):673–681

    Article  CAS  PubMed  Google Scholar 

  • Eder JP Jr, Supko JG, Clark JW et al (2002) Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 20(18):3772–3784

    Article  CAS  PubMed  Google Scholar 

  • Erkan M, Kleeff J, Gorbachevski A et al (2007) Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 132(4):1447–1464

    Article  CAS  PubMed  Google Scholar 

  • Erkan M, Michalski CW, Rieder S et al (2008) The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 6(10):1155–1161

    Article  PubMed  Google Scholar 

  • Erkan M, Weis N, Pan Z et al (2010) Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol Cancer 9:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang J, Seki T, Maeda H et al (2009) Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev 61(4):290–302

    Article  CAS  PubMed  Google Scholar 

  • Farrow B, Albo D, Berger DH et al (2008) The role of the tumor microenvironment in the progression of pancreatic cancer. J Surg Res 149(2):319–328

    Article  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis – therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Garcea G, Doucas H, Steward WP et al (2006) Hypoxia and angiogenesis in pancreatic cancer. ANZ J Surg 76(9):830–842

    Article  PubMed  Google Scholar 

  • Gray MJ, Zhang J, Ellis LM et al (2005) HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 24(19):3110–3120

    Article  CAS  PubMed  Google Scholar 

  • Greten FR, Weber CK, Greten TF et al (2002) Stat3 and NF-kappaB activation prevents apoptosis in pancreatic carcinogenesis. Gastroenterology 123(6):2052–2063

    Article  CAS  PubMed  Google Scholar 

  • Han YH, Moon HJ, You BR et al (2010) Propyl gallate inhibits the growth of HeLa cells via caspase-dependent apoptosis as well as a G1 phase arrest of the cell cycle. Oncol Rep 23(4):1153–1158

    CAS  PubMed  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS, Hess KR, Tran HT et al (2002a) Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 20(18):3792–3803

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS, Mullani NA, Davis DW et al (2002b) Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 20(18):3804–3814

    Article  CAS  PubMed  Google Scholar 

  • Hilgers W, Kern SE (1999) Molecular genetic basis of pancreatic adenocarcinoma. Genes Chromosomes Cancer 26(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Hruban RH, Goggins M et al. (2000) Progression model for pancreatic cancer. Clin Cancer Res 6(8):2969–2972

    CAS  PubMed  Google Scholar 

  • Hruban RH, Adsay NV, Albores-Saavedra J et al (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25(5):579–586

    Article  CAS  PubMed  Google Scholar 

  • Hruban RH, Takaori K, Klimstra DS et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28(8):977–987

    Article  PubMed  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Hwang TL, Liang Y, Chien KY et al (2006) Overexpression and elevated serum levels of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma. Proteomics 6(7):2259–2272

    Article  CAS  PubMed  Google Scholar 

  • Hwang RF, Moore T, Arumugam T et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68(3):918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165(1):35–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang MS, Miao H et al. (2004) Notch-1 regulates cell death independently of differentiation in murine erythroleukemia cells through multiple apoptosis and cell cycle pathways. J Cell Physiol 199(3):418–433

    Article  CAS  PubMed  Google Scholar 

  • Jiang HB, Xu M, Wang XP et al (2008) Pancreatic stellate cells promote proliferation and invasiveness of human pancreatic cancer cells via galectin-3. World J Gastroenterol 14(13):2023–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S, Hruban RH, Kamiyama M et al (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324(5924):217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketterer K, Rao S, Friess H et al (2003) Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer. Clin Cancer Res 9(14):5127–5136

    CAS  PubMed  Google Scholar 

  • Klein CA (2008) Cancer. The metastasis cascade. Science 321(5897):1785–1787

    Article  CAS  PubMed  Google Scholar 

  • Klimstra DS, Longnecker DS (1994) K-ras mutations in pancreatic ductal proliferative lesions. Am J Pathol 145(6):1547–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korc M (2007) Pancreatic cancer-associated stroma production. Am J Surg 194(4 Suppl):S84–S86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Y, Brandhorst H, Hossain H et al (2009) Activation of NF kappa B-dependent apoptotic pathway in pancreatic islet cells by hypoxia. Islets 1(1):19–25

    Article  PubMed  Google Scholar 

  • Langbein S, Frederiks WM, zur Hausen A et al (2008) Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer 122(11):2422–2428

    Article  CAS  PubMed  Google Scholar 

  • Li L, Cohen SN (1996) Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85(3):319–329

    Article  CAS  PubMed  Google Scholar 

  • Liao DJ, Wang Y, Wu J et al (2006) Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice. J Carcinog 5:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao JD, Adsay NV, Khannani F et al (2007) Histological complexities of pancreatic lesions from transgenic mouse models are consistent with biological and morphological heterogeneity of human pancreatic cancer. Histol Histopathol 22(6):661–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luebeck EG (2010) Cancer: genomic evolution of metastasis. Nature 467(7319):1053–1055

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6(4):1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Maiti AK (2010) Gene network analysis of oxidative stress-mediated drug sensitivity in resistant ovarian carcinoma cells. Pharmacogenomics J 10(2):94–104

    Article  CAS  PubMed  Google Scholar 

  • Maiti AK (2012) Genetic determinants of oxidative stress-mediated sensitization of drug-resistant cancer cells. Int J Cancer 130(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Marchesi F, Piemonti L, Montovani A et al (2010) Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev 21(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Mardin WA, Mees ST (2009) MicroRNAs: novel diagnostic and therapeutic tools for pancreatic ductal adenocarcinoma? Ann Surg Oncol 16(11):3183–3189

    Article  PubMed  Google Scholar 

  • Masamune A, Shimosegawa T (2009) Signal transduction in pancreatic stellate cells. J Gastroenterol 44(4):249–260

    Article  PubMed  Google Scholar 

  • Mathews LA, Cabarcas SM, Hurt EM et al (2011) Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas 40(5):730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzanti CM, Tandle A, Lorang D et al (2004) Early genetic mechanisms underlying the inhibitory effects of endostatin and fumagillin on human endothelial cells. Genome Res 14(8):1585–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megibow AJ (1992) Pancreatic adenocarcinoma: designing the examination to evaluate the clinical questions. Radiology 183(2):297–303

    Article  CAS  PubMed  Google Scholar 

  • Melle C, Ernst G, Schimmel B et al (2003) Biomarker discovery and identification in laser microdissected head and neck squamous cell carcinoma with ProteinChip technology, two-dimensional gel electrophoresis, tandem mass spectrometry, and immunohistochemistry. Mol Cell Proteomics 2(7):443–452

    CAS  PubMed  Google Scholar 

  • Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966

    Article  CAS  PubMed  Google Scholar 

  • Mungamuri SK, Yang X, Thor AD et al (2006) Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 66(9):4715–4724

    Article  CAS  PubMed  Google Scholar 

  • Neesse A, Michl P, Frese KK et al (2011) Stromal biology and therapy in pancreatic cancer. Gut 60(6):861–868

    Article  PubMed  Google Scholar 

  • Ohkawara T, Nishihira J, Takeda H et al (2005) Pathophysiological roles of macrophage migration inhibitory factor in gastrointestinal, hepatic, and pancreatic disorders. J Gastroenterol 40(2):117–122

    Article  CAS  PubMed  Google Scholar 

  • Olumi AF, Grossfeld GD, Hayward SW et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59(19):5002–5011

    CAS  PubMed  Google Scholar 

  • Omary MB, Lugea A, Lowe AW et al (2007) The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 117(1):50–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  Google Scholar 

  • Phillips PA, McCarroll JA, Park S et al (2003) Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut 52(2):275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podgorska M, Kocbuch K, Pawalczyk T et al (2005) Recent advances in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters. Acta Biochim Pol 52(4):749–758

    CAS  PubMed  Google Scholar 

  • Pour PM, Bell RH, Batra SK et al (2003) Neural invasion in the staging of pancreatic cancer. Pancreas 26(4):322–325

    Article  PubMed  Google Scholar 

  • Rafii S, Lyden D, Benezra R et al (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2(11):826–835

    Article  CAS  PubMed  Google Scholar 

  • Reiser-Erkan C, Erkan M, Pan Z et al (2008) Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic ductal adenocarcinoma. Cancer Biol Ther 7(9):1353–1360

    Article  Google Scholar 

  • Richardson DL, Backes FJ, Seamin LG et al (2008) Combination gemcitabine, platinum, and bevacizumab for the treatment of recurrent ovarian cancer. Gynecol Oncol 111(3):461–466

    Article  CAS  PubMed  Google Scholar 

  • Ruan K, Song G, Ouyang G (2009) Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 107(6):1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Russo FP, Alison MR, Bigger BW et al (2006) The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130(6):1807–1821

    Article  PubMed  Google Scholar 

  • Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550

    Article  CAS  PubMed  Google Scholar 

  • Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23(10):912–923

    Article  CAS  PubMed  Google Scholar 

  • Schedin P, Elias A (2004) Multistep tumorigenesis and the microenvironment. Breast Cancer Res 6(2):93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneiderhan W, Diaz F, Fundel M et al (2007) Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay. J Cell Sci 120(Pt 3):512–519

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  PubMed  Google Scholar 

  • Shah AN, Summy JM, Zhang J et al (2007) Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 14(12):3629–3637

    Article  PubMed  Google Scholar 

  • Shek FW, Benyon RC, Walker FM et al (2002) Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol 160(5):1787–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi WD, Meng ZQ et al. (2009) Identification of liver metastasis-related genes in a novel human pancreatic carcinoma cell model by microarray analysis. Cancer Lett 283(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Shintani Y, Hollingsworth MA et al. (2006) Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH(2)-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 66(24):11745–11753

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Ferrara N (2008a) Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res 68(14):5501–5504

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Ferrara N (2008b) Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapie. Drug Resist Updat 11(6):219–230

    Article  CAS  PubMed  Google Scholar 

  • Song MS, Park YK, Lee JH et al (2001) Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade. Cancer Res 61(22):8322–8330

    CAS  PubMed  Google Scholar 

  • Stathis A, Moore MJ (2010) Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 7(3):163–172

    Article  CAS  PubMed  Google Scholar 

  • Summy JM, Trevino JG, Baker CH et al (2005) c-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK. Pancreas 31(3):263–274

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Bollig A, Wu J et al (2008) Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice. Mol Cancer 7:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turzanski J, Grundy M, Shang S et al (2005) P-glycoprotein is implicated in the inhibition of ceramide-induced apoptosis in TF-1 acute myeloid leukemia cells by modulation of the glucosylceramide synthase pathway. Exp Hematol 33(1):62–72

    Article  CAS  PubMed  Google Scholar 

  • Tuxhorn JA, Ayala GE, Smith MJ et al (2002) Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 8(9):2912–2923

    CAS  PubMed  Google Scholar 

  • von Wichert G, Seufferlein T, Alder G (2008) Palliative treatment of pancreatic cancer. J Dig Dis 9(1):1–7

    Article  CAS  Google Scholar 

  • Vonlaufen A, Joshi S, Qu C et al (2008) Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res 68(7):2085–2093

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang Y et al. (2006) Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther 5(3):483–493

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li Y et al. (2009) Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 69(6):2400–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg RA (2008) The many faces of tumor dormancy. APMIS 116(7–8):548–551

    Article  PubMed  Google Scholar 

  • Weinberg F, Hamanaka R, Wheaton WW et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107(19):8788–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wist AD, Berger SI et al. (2009) Systems pharmacology and genome medicine: a future perspective. Genome Med 1(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yachida S, Jones S, Bozic I et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo TP, Hruban RH, Leach SP et al (2002) Pancreatic cancer. Curr Probl Cancer 26(4):176–275

    Article  PubMed  Google Scholar 

  • Yilmaz OH, Valdez R, Theisen BK et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482

    Article  CAS  PubMed  Google Scholar 

  • You L, Chang D, Du HZ et al (2011) Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells. Biochem Biophys Res Commun 407(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Zalatnai A, Molnar J (2007) Review. Molecular background of chemoresistance in pancreatic cancer. In Vivo 21(2):339–347

    CAS  PubMed  Google Scholar 

  • Zhang L, Jamaluddin MS, Weakley SM et al (2011) Roles and mechanisms of microRNAs in pancreatic cancer. World J Surg 35(8):1725–1731

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao YP, Chen G, Feng B et al (2007) Microarray analysis of gene expression profile of multidrug resistance in pancreatic cancer. Chin Med J (Engl) 120(20):1743–1752

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the German Krebshilfe (Deutsche Krebshilfe, Max-Eder 108876), DFG National Priority Research Program: the Tumor-Vessel Interface “SPP1190” and KFO214, and the German Federal Ministry of Research and Technology (Bundesministerium für Bildung und Forschung – BMBF 03NUK004C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abdollahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chiblak, S., Demircioglu, F., Golestaneh, A.F., Abdollahi, A. (2012). Systems Biology of Pancreatic Cancer: The Role of Tumor-Microenvironment Communication in Development, Progression and Therapy Resistance. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_6

Download citation

Publish with us

Policies and ethics