Skip to main content

Multi-population Network Models of the Cortical Microcircuit

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (III)

Abstract

In this paper, we investigate a data-based multi-population extension of the balanced random network model (BRN) (Amit DJ and Brunel N, Cereb Cortex 7:237–252, 1997; van Vreeswijk C and Sompolinsky H, Science 274:1724–1726, 1996). We observe that the findings based on the mono-layered network model, especially regarding the asynchronous irregular activity state, largely generalize to the multi-population model (MPM). In addition, the increased complexity of the network structure yields cell-type specific activity features which we relate to other data-based microcircuit models as well as to experimental data. We argue that the specificity of the connectivity between cell types is crucial to achieve consistency of simulated and in vivo activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit, D.J., Brunel, N.: Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7 (1997) 237–252.

    Article  CAS  PubMed  Google Scholar 

  2. van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274 (1996) 1724–1726.

    Article  PubMed  Google Scholar 

  3. de Kock, C.P.J., Sakmann, B.: Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc. Natl. Acad. Sci. USA 106(38) (2009) 16446–16450.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. Cereb. Cortex (2012). doi:10.1093/cercor/bhs358.

    PubMed Central  PubMed  Google Scholar 

  5. Binzegger, T., Douglas, R.J., Martin, K.A.C.: A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 39(24) (2004) 8441–8453.

    Article  Google Scholar 

  6. Thomson, A.M., West, D.C., Wang, Y., Bannister, A.: Synaptic connections and small circuits involving excitatory and inhibitory neurons in layer 2–5 of adult rat and cat neocortex: Triple intracellular recordings and biocytin labelling in vitro. Cereb. Cortex 12 (2002) 936–953.

    Article  PubMed  Google Scholar 

  7. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8(3) (2000) 183–208.

    Article  CAS  PubMed  Google Scholar 

  8. Izhikevich, E.M., Edelmann, G.M.: Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA 105(9) (2008) 3593–3598.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Heinzle, J., Hepp, K., Martin, K. A. C.: A microcircuit model of the frontal eyefields. J. Neurosci. 27(35) (2007) 9341–9353.

    Article  CAS  PubMed  Google Scholar 

  10. Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., et al.: Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93(4) (2005) 2194–2232.

    Article  PubMed  Google Scholar 

  11. Hill, S., Tononi, G.: Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93(3) (2005) 1671–1698.

    Article  PubMed  Google Scholar 

  12. Haeusler, S., Maass, W.: A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cereb. Cortex 17(1) (2007) 149–162.

    Article  PubMed  Google Scholar 

  13. Rasch, M.J., Schuch, K., Logothetis, N.K., Maass, W.: Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1. J. Neurophysiol. 105 (2011) 757–778.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Izhikevich, E.: Simple model of spiking neurons. IEEE Transactions on neural networks. 14(6) (2003) 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  15. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond) 117 (1952) 500–544.

    CAS  Google Scholar 

Download references

Acknowledgments

Partially supported by the Next-Generation Supercomputer Project of the Ministry of education, culture, sports, science and technology (MEXT) (Japan), the Helmholtz Alliance on Systems Biology, JUGENE grant JINB33 and EU Grant 269921 (BrainScaleS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias C. Potjans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Potjans, T.C., Diesmann, M. (2013). Multi-population Network Models of the Cortical Microcircuit. In: Yamaguchi, Y. (eds) Advances in Cognitive Neurodynamics (III). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4792-0_13

Download citation

Publish with us

Policies and ethics