Skip to main content

Advanced Features in Solar-Photon Sailing

  • Chapter
  • First Online:
Fast Solar Sailing

Part of the book series: Space Technology Library ((SPTL,volume 30))

  • 1581 Accesses

Abstract

Thrust acceleration models may be extended by taking the fluctuating interplanetary environment into account through different ways. TSI variations change the level of thrust directly, while ultraviolet spectral irradiance may alter the optical properties of the sail’s reflective material. Such modifications may be modeled as a function of the UV-energy absorbed by unit area of this layer as sailcraft moves. One says that UV-light causes an optical degradation. Solar wind ions, though representing a very small perturbation to sailcraft motion from the dynamical pressure viewpoint, however penetrate throughout the reflective layer, and may bring about some degradation if the absorbed dose is high during the flight. This has the twofold effect of lessening thrust and increasing sail temperature, which is an issue in general. Degradation may be induced by UV-light and ion bombardment at the same time. Though a detailed model is explained, however such topics are only hinted here. Further studies—devoted to a wide analysis of quantitative UV/solar-wind impact on sailcraft trajectories/orbits—are needed also in view of new materials for sail making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the current simplified framework, the solar irradiance has been assumed constant on average in the ultraviolet band (Fig. 2.9); then, combining data from Fig. 8.4 and Fig. 1 of [15], we took the value 0.072 for the undamaged-material’s ultraviolet-band absorptance in a broad range of incidence angles.

References

  1. Albarado, T. L., Hollerman, W. A., Edwards, D., Hubbs, W., Semmel, C. (2005), electron exposure measurements of candidate solar sail materials. Journal of Solar Energy Engineering, 127(1). http://dx.doi.org/10.1115/1.1823495.

  2. Bellman, R. E., Dreyfus, S. E. (1962), Applied Dynamic Programming. Princeton: Princeton University Press.

    MATH  Google Scholar 

  3. Edwards, D. L., Hubbs, W., Stanaland, T., Hollerman, A., Altstatt, R. L. (2002), Characterization of space environmental effects on candidate solar sail material. Proceedings of SPIE, 4823, 67. http://dx.doi.org/10.1117/12.451455.

    Article  Google Scholar 

  4. NASA GSFC (1989), Goddard Trajectory Determination System (GTDS), Mathematical Theory, Rev. 1, FDD/552-89/00l, CSC/TR-89/S00l.

    Google Scholar 

  5. Hollerman, W. A., Bergeron, N. P., Moore, R. J. (2005), Proton survivability measurements for candidate solar sail materials. In Nuclear Science Symposium Conference. New York: IEEE. doi:10.1109/NSSMIC.2005.1596590.

    Google Scholar 

  6. International Commission on Radiological Protection (2008), ICRP Publication 103: Recommendations of the ICRP. Amsterdam: Elsevier. ISBN 0-7020-3048-1, 978-0-7020-3048-2.

    Google Scholar 

  7. Ishizawa, J., Mori, K. (2009), Space environment effects on cross-linked ETFE polymer, session 1: radiation and charging effects. In ISMSE 2009, 14–18 September 2009.

    Google Scholar 

  8. Jazwinski, A. H. (1970), Mathematics in Science and Engineering: Vol. 64. Stochastic Processes and Filtering Theory. New York: Academic Press.

    Book  MATH  Google Scholar 

  9. Kezerashvili, R. Ya., Matloff, G. L. (2007), Solar radiation and the beryllium hollow-body sail, 1: the ionization and disintegration effects. Journal of the British Interplanetary Society, 60, 169–179.

    Google Scholar 

  10. Kezerashvili, R. Ya., Matloff, G. L. (2008), Solar radiation and the beryllium hollow-body sail, 2: diffusion, recombination and erosion processes. Journal of the British Interplanetary Society, 61, 47–57.

    Google Scholar 

  11. Kezerashvili, R. Ya., Matloff, G. L. (2009), Microscopic approach to analyze solar-sail space-environment effects. Advances in Space Research, 44(7), 859–869.

    Article  Google Scholar 

  12. Liberzon, D. (2012), Calculus of Variations and Optimal Control Theory. Princeton: Princeton University Press. ISBN 978-0-691-15187-8.

    MATH  Google Scholar 

  13. Maybeck, P. S. (1982), Stochastic Models, Estimation and Control, Vol. 2. New York: Academic Press. ISBN 0-12-480702-X.

    MATH  Google Scholar 

  14. Maybeck, P. S. (1982), Stochastic Models, Estimation and Control, Vol. 3. New York: Academic Press. ISBN 0-12-480703-8.

    Google Scholar 

  15. Rakić, A. D. (1995), Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Applied Optics, 34, 22.

    Article  Google Scholar 

  16. Siouris, G. M. (1996), An Engineering Approach to Optimal Control and Estimation Theory. New York: Wiley. ISBN 0-471-12126-6.

    Google Scholar 

  17. Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. New York: Wiley-Interscience. ISBN 0-471-33052-3.

    Book  Google Scholar 

  18. Tsuda, Y., Mori, O., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Kawaguchi, J. (2011), Flight status of IKAROS deep space solar sail demonstrator. Acta Astronautica, 69(9–10), 833–840.

    Article  Google Scholar 

  19. van Kampen, N. G. (2007), Stochastic Processes in Physics and Chemistry (3rd edn.). North-Holland Personal Library. Amsterdam: Elsevier.

    Google Scholar 

  20. Vulpetti, G. (2002), Sailcraft trajectory options for the interstellar probe: mathematical theory and numerical results. In The Interstellar Probe (ISP): Pre-Perihelion Trajectories and Application of Holography. NASA/CR-2002-211730.

    Google Scholar 

  21. Vulpetti, G. (2010), Effect of the total solar irradiance variations on solar-sail low eccentricity orbits. Acta Astronautica, 67(1–2). doi:10.1016/j.actaastro.2010.02.004.

  22. Vulpetti, G. (2010), Impact of total solar irradiance fluctuations on solar-sail mission design. SciTopics, November 5.

    Google Scholar 

  23. Vulpetti, G. (2011), Total solar irradiance fluctuation effects on sailcraft-Mars rendezvous. Acta Astronautica, 68(5–6). doi:10.1016/j.actaastro.2010.01.010.

  24. Yamaguchi, T., Mimasu, Y., Tsuda, Y., Funase, R., Sawada, H., Mori, O., Morimoto, M. Y., Takeuchi, H., Yoshikawa, M. (2010), Trajectory analysis of small solar sail demonstration spacecraft IKAROS considering the uncertainty of solar radiation pressure. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 8, 37–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vulpetti, G. (2013). Advanced Features in Solar-Photon Sailing. In: Fast Solar Sailing. Space Technology Library, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4777-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4777-7_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4776-0

  • Online ISBN: 978-94-007-4777-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics