Skip to main content

DNA Repair Mechanisms in Breast Cancer Stem Cells

  • Chapter
  • First Online:
DNA Repair of Cancer Stem Cells
  • 1782 Accesses

Abstract

Breast cancer stem cells (BCSC) are a small subset in heterogeneous breast cancer cell populations and are responsible for breast cancer initiation. BCSC have stem cell properties. The maintenance and propaganda of BCSC is controlled by an intrinsic stem cell signaling network and regulated by extrinsic environmental factors. BCSC are resistant to chemotherapy and radiation therapy. The therapeutic resistance of BCSC derives from multiple mechanisms. In this chapter, we discussed the potential mechanisms for enhanced DNA repair of BCSC in the response to DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ALDH:

Aldehyde dehydrogenase

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia and Rad3 related

BER:

Base excision repair

BCSC:

Breast cancer stem cells

BRCA 1:

Breast cancer type 1 susceptibility protein

Cdc-25s:

Cell division cycle 25 homologs

Chk1:

CHK1 checkpoint homolog (S. pombe)

Chk2:

CHK2 checkpoint homolog (S. pombe)

CXCR4:

C-X-C chemokine receptor type 4

DNA-PK:

DNA-dependent protein kinase catalytic subunit

DSB:

Double-strand DNA breaks

γ-H2AX:

Phosphorylated histone 2AX

E2A:

Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)

E2F:

Transcription activator that binds DNA through the E2 recognition site

ES cells:

Embryonic stem cells

ESA:

Epithelial specific antigen

Her2:

Human epidermal growth factor receptor 2

HIF:

Hypoxia-inducible factor

IL-6:

Interleukin 6

IL-8:

Interleukin 8

MDC1:

Mediator of DNA damage checkpoint 1

MLH1:

MutL homolog 1, colon cancer, nonpolyposis type 2

MSH2:

MutS homolog 2, colon cancer, nonpolyposis type 1

NHEJ:

Non-homologous end joining

NMEC:

Normal mammary epithelial cells

Oct-4:

Octamer-binding transcription factor 4

PCNA:

Proliferation cell nuclear antigen

PROCR:

Endothelial protein C receptor

PTEN:

Phosphatase and tensin homolog

PUMA:

BCL2 binding component 3

RAD51:

RAD51 homolog (RecA homolog, E. coli)

RPA-70:

Replication protein A1 (70Kd)

SDF:

Stromal-derived-factor

TCF:

T-cell specific, HMG-box

TGF:

Transforming growth factor

TWIST:

Twist-related protein as a basic helix-loop-helix transcription factor

Wnt:

Wingless/int

NOXA:

Phorbol-12-myristate-13-acetate-induced protein 1.

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    PubMed  CAS  Google Scholar 

  2. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511

    PubMed  CAS  Google Scholar 

  3. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    PubMed  CAS  Google Scholar 

  4. Morimoto K, Kim SJ, Tanei T, Shimazu K, Tanji Y, Taguchi T, Tamaki Y, Terada N, Noguchi S (2009) Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 100(6):1062–1068

    PubMed  CAS  Google Scholar 

  5. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13(8B):2236–2252

    PubMed  Google Scholar 

  6. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73

    PubMed  CAS  Google Scholar 

  7. Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, Sayre JW, Stefani E, McBride W, Pajonk F (2009) In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst 101(5):350–359

    PubMed  CAS  Google Scholar 

  8. Lagadec C, Vlashi E, Della Donna L, Meng Y, Dekmezian C, Kim K, Pajonk F (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res 12(1):R13

    PubMed  Google Scholar 

  9. Sajithlal GB, Rothermund K, Zhang F, Dabbs DJ, Latimer JJ, Grant SG, Prochownik EV (2010) Permanently blocked stem cells derived from breast cancer cell lines. Stem Cells 28(6):1008–1018

    PubMed  Google Scholar 

  10. Clarke RB (2005) Isolation and characterization of human mammary stem cells. Cell Prolif 38(6):375–386

    PubMed  CAS  Google Scholar 

  11. Engelmann K, Shen H, Finn OJ (2008) MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res 68(7):2419–2426

    PubMed  CAS  Google Scholar 

  12. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65(14):6207–6219

    PubMed  CAS  Google Scholar 

  13. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R, Jr., Badve S, Nakshatri H (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8(5):R59

    PubMed  Google Scholar 

  14. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313

    PubMed  CAS  Google Scholar 

  15. Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, Tsai ST, Jeng YM, Shew JY, Kung JT, Chen CH et al (2009) Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 4(12):e8377

    PubMed  Google Scholar 

  16. Reuben JM, Lee BN, Gao H, Cohen EN, Mego M, Giordano A, Wang X, Lodhi A, Krishnamurthy S, Hortobagyi GN et al (2011) Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44CD24lo cancer stem cell phenotype. Eur J Cancer 47(10):1527–1536

    PubMed  CAS  Google Scholar 

  17. Ricardo S, Vieira AF, Gerhard R, Leitao D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F, Paredes J (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64(11):937–946

    PubMed  Google Scholar 

  18. Dontu G (2008) Breast cancer stem cell markers—the rocky road to clinical applications. Breast Cancer Res 10(5):110

    PubMed  Google Scholar 

  19. Kai K, Arima Y, Kamiya T, Saya H (2010) Breast cancer stem cells. Breast Cancer 17(2):80–85

    PubMed  Google Scholar 

  20. Nakshatri H, Srour EF, Badve S (2009) Breast cancer stem cells and intrinsic subtypes: controversies rage on. Curr Stem Cell Res Ther 4(1):50–60

    PubMed  CAS  Google Scholar 

  21. Campbell LL, Polyak K (2007) Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6(19):2332–2338

    PubMed  CAS  Google Scholar 

  22. O’Brien CA, Kreso A, Jamieson CH (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16(12):3113–3120

    PubMed  Google Scholar 

  23. Takebe N, Ivy SP (2010) Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res 16(12):3106–3112

    PubMed  CAS  Google Scholar 

  24. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell proliferation 36(Suppl 1):59–72

    PubMed  CAS  Google Scholar 

  25. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 108(19):7950–7955

    PubMed  CAS  Google Scholar 

  26. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    PubMed  CAS  Google Scholar 

  27. Takebe N, Warren RQ, Ivy SP (2011) Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res 13(3):211

    PubMed  Google Scholar 

  28. Hollier BG, Evans K, Mani SA (2009) The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 14(1):29–43

    PubMed  Google Scholar 

  29. Liu CG, Lu Y, Wang BB, Zhang YJ, Zhang RS, Chen B, Xu H, Jin F, Lu P (2011) Clinical implications of stem cell gene Oct-4 expression in breast cancer. Ann Surg 253(6):1165–1171

    PubMed  Google Scholar 

  30. Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121(10):3804–3809

    PubMed  CAS  Google Scholar 

  31. Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci 118(Pt 16):3585–3594

    PubMed  CAS  Google Scholar 

  32. Chase A, Cross NC (2011) Aberrations of EZH2 in cancer. Clin Cancer Res 17(9):2613–2618

    PubMed  CAS  Google Scholar 

  33. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, Woodward WA, Hsu JM, Hortobagyi GN, Hung MC (2011) EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 19(1):86–100

    Google Scholar 

  34. Oliveira-Costa JP, Zanetti JS, Silveira GG, Soave DF, Oliveira LR, Zorgetto VA, Soares FA, Zucoloto S, Ribeiro-Silva A (2011) Differential expression of HIF-1alpha in CD44+ CD24-/low breast ductal carcinomas. Diagnostic Pathology 6:73

    PubMed  Google Scholar 

  35. Louie E, Nik S, Chen JS, Schmidt M, Song B, Pacson C, Chen XF, Park S, Ju J, Chen EI (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12(6):R94

    PubMed  CAS  Google Scholar 

  36. Watabe T, Miyazono K (2009) Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res 19(1):103–115

    PubMed  CAS  Google Scholar 

  37. Tan AR, Alexe G, Reiss M (2009) Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 115(3):453–495

    PubMed  CAS  Google Scholar 

  38. Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K, Rankin-Gee EK, Wang SE (2011) Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30(12):1470–1480

    PubMed  CAS  Google Scholar 

  39. Savarese TM, Strohsnitter WC, Low HP, Liu Q, Baik I, Okulicz W, Chelmow DP, Lagiou P, Quesenberry PJ, Noller KL et al (2007) Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res: BCR 9(3):R29

    PubMed  Google Scholar 

  40. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 108(4):1397–1402

    PubMed  CAS  Google Scholar 

  41. Huang M, Li Y, Zhang H, Nan F (2010) Breast cancer stromal fibroblasts promote the generation of CD44+CD24− cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res CR 29:80

    Google Scholar 

  42. Vasquez KM (2010) Targeting and processing of site-specific DNA interstrand crosslinks. Environ Mol Mutagen 51(6):527–539

    PubMed  CAS  Google Scholar 

  43. Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, Wick W (2008) Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14(10):2900–2908

    PubMed  CAS  Google Scholar 

  44. Drablos F, Feyzi E, Aas PA, Vaagbo CB, Kavli B, Bratlie MS, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA repair 3(11):1389–1407

    PubMed  CAS  Google Scholar 

  45. Kaina B, Christmann M (2002) DNA repair in resistance to alkylating anticancer drugs. Int J Clin Pharmacol Ther 40(8):354–367

    PubMed  CAS  Google Scholar 

  46. Rosell R, Crino L, Danenberg K, Scagliotti G, Bepler G, Taron M, Alberola V, Provencio M, Camps C, De Marinis F et al (2003) Targeted therapy in combination with gemcitabine in non-small cell lung cancer. Semin Oncol 30(4 Suppl 10):19–25

    PubMed  CAS  Google Scholar 

  47. Wyatt MD, Wilson DM, 3rd (2009) Participation of DNA repair in the response to 5-fluorouracil. Cell Mol Life Sci 66(5):788–799

    PubMed  CAS  Google Scholar 

  48. Mounetou E, Debiton E, Buchdahl C, Gardette D, Gramain JC, Maurizis JC, Veyre A, Madelmont JC (1997) O6-(alkyl/aralkyl)guanosine and 2ʹ-deoxyguanosine derivatives: synthesis and ability to enhance chloroethylnitrosourea antitumor action. J Med Chem 40(18):2902–2909

    PubMed  CAS  Google Scholar 

  49. Yim EK, Bae JS, Lee SB, Lee KH, Kim CJ, Namkoong SE, Um SJ, Park JS (2004) Proteome analysis of differential protein expression in cervical cancer cells after paclitaxel treatment. Cancer Res Treat 36(6):395–399

    PubMed  Google Scholar 

  50. Yalowich JC (1987) Effects of microtubule inhibitors on etoposide accumulation and DNA damage in human K562 cells in vitro. Cancer Res 47(4):1010–1015

    PubMed  CAS  Google Scholar 

  51. Sortibran AN, Tellez MG, Rodriguez-Arnaiz R (2006) Genotoxic profile of inhibitors of topoisomerases I (camptothecin) and II (etoposide) in a mitotic recombination and sex-chromosome loss somatic eye assay of Drosophila melanogaster. Mutat Res 604(1–2):83–90

    PubMed  CAS  Google Scholar 

  52. Heisig P (2009) Type II topoisomerases—inhibitors, repair mechanisms and mutations. Mutagenesis 24(6):465–469

    PubMed  CAS  Google Scholar 

  53. James E, Waldron-Lynch MG, Saif MW (2009) Prolonged survival in a patient with BRCA2 associated metastatic pancreatic cancer after exposure to camptothecin: a case report and review of literature. Anticancer Drugs 20(7):634–638

    PubMed  CAS  Google Scholar 

  54. Malik M, Nitiss JL (2004) DNA repair functions that control sensitivity to topoisomerase-targeting drugs. Eukaryotic Cell 3(1):82–90

    PubMed  CAS  Google Scholar 

  55. Miyagawa K (2008) Clinical relevance of the homologous recombination machinery in cancer therapy. Cancer Sci 99(2):187–194

    PubMed  CAS  Google Scholar 

  56. Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417(3):639–650

    PubMed  CAS  Google Scholar 

  57. Tomita M (2010) Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death. J Radiat Res 51(5):493–501

    PubMed  CAS  Google Scholar 

  58. Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22(37):5784–5791

    PubMed  CAS  Google Scholar 

  59. Murray D, Vallee-Lucic L, Rosenberg E, Andersson B (2002) Sensitivity of nucleotide excision repair-deficient human cells to ionizing radiation and cyclophosphamide. Anticancer Res 22(1A):21–26

    PubMed  CAS  Google Scholar 

  60. Hafer K, Iwamoto KS, Scuric Z, Schiestl RH (2007) Adaptive response to gamma radiation in mammalian cells proficient and deficient in components of nucleotide excision repair. Radiat Res 168(2):168–174

    PubMed  CAS  Google Scholar 

  61. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T (2010) Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37(4):492–502

    PubMed  CAS  Google Scholar 

  62. Lacerda L, Pusztai L, Woodward WA (2010) The role of tumor initiating cells in drug resistance of breast cancer: implications for future therapeutic approaches. Drug Resist Updat 13(4–5):99–108

    PubMed  CAS  Google Scholar 

  63. Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y, Noguchi S (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12):4234–4241

    PubMed  CAS  Google Scholar 

  64. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–679

    PubMed  CAS  Google Scholar 

  65. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106(33):13820–13825

    PubMed  CAS  Google Scholar 

  66. Ahmed MA, Aleskandarany MA, Rakha EA, Moustafa RZ, Benhasouna A, Nolan C, Green AR, Ilyas M, Ellis IO (2011) A CD44(−)/CD24(+) phenotype is a poor prognostic marker in early invasive breast cancer. Breast Cancer Res Treat. [Epub ahead of print]

    Google Scholar 

  67. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    PubMed  CAS  Google Scholar 

  68. Pearce DJ, Taussig D, Simpson C, Allen K, Rohatiner AZ, Lister TA, Bonnet D (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23(6):752–760

    PubMed  CAS  Google Scholar 

  69. Chen MF, Lin CT, Chen WC, Yang CT, Chen CC, Liao SK, Liu JM, Lu CH, Lee KD (2006) The sensitivity of human mesenchymal stem cells to ionizing radiation. Int J Radiat Oncol Biol Phys 66(1):244–253

    PubMed  CAS  Google Scholar 

  70. Yin H, Glass J (2011) The phenotypic radiation resistance of CD44+/CD24(− or low) breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS One 6(9):e24080

    Google Scholar 

  71. Karimi-Busheri F, Rasouli-Nia A, Mackey JR, Weinfeld M (2010) Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res 12(3):R31

    PubMed  Google Scholar 

  72. Pajonk F, Vlashi E, McBride WH (2010) Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells 28(4):639–648

    PubMed  CAS  Google Scholar 

  73. Pawlik TM, Keyomarsi K (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 59(4):928–942

    PubMed  Google Scholar 

  74. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297–308

    PubMed  CAS  Google Scholar 

  75. Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7(18):2902–2906

    PubMed  CAS  Google Scholar 

  76. Tomashevski A, Webster DR, Grammas P, Gorospe M, Kruman, II (2010) Cyclin-C-dependent cell-cycle entry is required for activation of non-homologous end joining DNA repair in postmitotic neurons. Cell Death Differ 17(7):1189–1198

    PubMed  CAS  Google Scholar 

  77. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011:11 (Article ID 396076)

    Google Scholar 

  78. Al-Assar O, Mantoni T, Lunardi S, Kingham G, Helleday T, Brunner TB (2011) Breast cancer stem-like cells show dominant homologous recombination due to a larger S-G2 fraction. Cancer Biol Ther 11(12):1028–1035

    PubMed  CAS  Google Scholar 

  79. Harper LJ, Costea DE, Gammon L, Fazil B, Biddle A, Mackenzie IC (2010) Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer 10:166

    PubMed  Google Scholar 

  80. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147

    PubMed  CAS  Google Scholar 

  81. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    PubMed  CAS  Google Scholar 

  82. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biology 7(6):e1000121

    PubMed  Google Scholar 

  83. Verani R, Cappuccio I, Spinsanti P, Gradini R, Caruso A, Magnotti MC, Motolese M, Nicoletti F, Melchiorri D (2007) Expression of the Wnt inhibitor Dickkopf-1 is required for the induction of neural markers in mouse embryonic stem cells differentiating in response to retinoic acid. J Neurochem 100(1):242–250

    PubMed  CAS  Google Scholar 

  84. Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280(29):26770–26775

    PubMed  CAS  Google Scholar 

  85. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH (2010) Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176(6):2911–2920

    PubMed  Google Scholar 

  86. Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A, Natrajan R, Reis-Filho JS (2011) Beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol 24(2):209–231

    PubMed  CAS  Google Scholar 

  87. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104(2):618–623

    PubMed  CAS  Google Scholar 

  88. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D, Medina D, Tsimelzon A, Hilsenbeck S, Green JE et al (2008) Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 68(12):4674–4682

    PubMed  CAS  Google Scholar 

  89. Idogawa M, Masutani M, Shitashige M, Honda K, Tokino T, Shinomura Y, Imai K, Hirohashi S, Yamada T (2007) Ku70 and poly(ADP-ribose) polymerase-1 competitively regulate beta-catenin and T-cell factor-4-mediated gene transactivation: possible linkage of DNA damage recognition and Wnt signaling. Cancer Res 67(3):911–918

    PubMed  CAS  Google Scholar 

  90. Xu M, Yu Q, Subrahmanyam R, Difilippantonio MJ, Ried T, Sen JM (2008) Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol 28(5):1713–1723

    PubMed  CAS  Google Scholar 

  91. Castiglia D, Bernardini S, Alvino E, Pagani E, De Luca N, Falcinelli S, Pacchiarotti A, Bonmassar E, Zambruno G, D’Atri S (2008) Concomitant activation of Wnt pathway and loss of mismatch repair function in human melanoma. Genes Chromosomes Cancer 47(7):614–624

    PubMed  CAS  Google Scholar 

  92. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6(6):R605–615

    PubMed  CAS  Google Scholar 

  93. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785

    Google Scholar 

  94. Wu F, Stutzman A, Mo YY (2007) Notch signaling and its role in breast cancer. Front Biosci 12:4370–4383

    PubMed  CAS  Google Scholar 

  95. Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66(3):1517–1525

    PubMed  CAS  Google Scholar 

  96. Wickremasinghe RG, Prentice AG, Steele AJ (2011) p53 and Notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies. Leukemia 25(9):1400–1407

    Google Scholar 

  97. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28(1):17–28

    PubMed  CAS  Google Scholar 

  98. Helczynska K, Kronblad A, Jogi A, Nilsson E, Beckman S, Landberg G, Pahlman S (2003) Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res 63(7):1441–1444

    PubMed  CAS  Google Scholar 

  99. Axelson H, Fredlund E, Ovenberger M, Landberg G, Pahlman S (2005) Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 16(4–5):554–563

    PubMed  CAS  Google Scholar 

  100. Holmquist L, Lofstedt T, Pahlman S (2006) Effect of hypoxia on the tumor phenotype: the neuroblastoma and breast cancer models. Adv Exp Med Biol 587:179–193

    PubMed  CAS  Google Scholar 

  101. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652

    PubMed  CAS  Google Scholar 

  102. Sullivan R, Graham CH (2009) Hypoxia prevents etoposide-induced DNA damage in cancer cells through a mechanism involving hypoxia-inducible factor 1. Mol Cancer Ther 8(6):1702–1713

    PubMed  CAS  Google Scholar 

  103. Bindra RS, Crosby ME, Glazer PM (2007) Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev 26(2):249–260

    PubMed  CAS  Google Scholar 

  104. Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M (2006) Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 66(18):9009–9016

    PubMed  CAS  Google Scholar 

  105. Bindra RS, Glazer PM (2007) Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Letters 252(1):93–103

    PubMed  CAS  Google Scholar 

  106. Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ, Bristow RG, Classon MK, Glazer PM (2005) Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res 65(24):11597–11604

    PubMed  CAS  Google Scholar 

  107. Bindra RS, Glazer PM (2007) Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26(14):2048–2057

    PubMed  CAS  Google Scholar 

  108. Madan E, Gogna R, Pati U (2012) p53Ser15 Phosphorylation disrupts p53-RPA70 complex and induces RPA70-mediated DNA repair in hypoxia. Biochem J 443:811–820

    PubMed  CAS  Google Scholar 

  109. Sullivan R, Pare GC, Frederiksen LJ, Semenza GL, Graham CH (2008) Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther 7(7):1961–1973

    PubMed  CAS  Google Scholar 

  110. Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 14(3):191–201

    PubMed  CAS  Google Scholar 

  111. Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, Hung SC (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117(2):459–469

    PubMed  CAS  Google Scholar 

  112. Seton-Rogers S (2011) Hypoxia: HIF switch. Nat Rev Cancer 11(6):391

    PubMed  CAS  Google Scholar 

  113. Lin Q, Cong X, Yun Z (2011) Differential hypoxic regulation of hypoxia-inducible factors 1alpha and 2alpha. Mol Cancer Res 9(6):757–765

    PubMed  CAS  Google Scholar 

  114. Koh MY, Powis G (2009) HAF: the new player in oxygen-independent HIF-1alpha degradation. Cell Cycle 8(9):1359–1366

    PubMed  CAS  Google Scholar 

  115. Koh MY, Lemos R, Jr., Liu X, Powis G (2011) The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 71(11):4015–4027

    PubMed  CAS  Google Scholar 

  116. Stiehl DP, Bordoli MR, Abreu-Rodriguez I, Wollenick K, Schraml P, Gradin K, Poellinger L, Kristiansen G, Wenger RH (2012) Non-canonical HIF-2alpha function drives autonomous breast cancer cell growth via an AREG-EGFR/ErbB4 autocrine loop. Oncogene 31(18):2283–2297

    Google Scholar 

  117. Rennstam K, McMichael N, Berglund P, Honeth G, Hegardt C, Ryden L, Luts L, Bendahl PO, Hedenfalk I (2010) Numb protein expression correlates with a basal-like phenotype and cancer stem cell markers in primary breast cancer. Breast Cancer Res Treat 122(2):315–324

    PubMed  CAS  Google Scholar 

  118. Capalbo G, Dittmann K, Weiss C, Reichert S, Hausmann E, Rodel C, Rodel F (2010) Radiation-induced survivin nuclear accumulation is linked to DNA damage repair. Int J Radiat Oncol Biol Phys 77(1):226–234

    PubMed  CAS  Google Scholar 

  119. Kakarala M, Wicha MS (2008) Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26(17):2813–2820

    PubMed  Google Scholar 

  120. Molyneux G, Smalley MJ (2011) The cell of origin of BRCA1 mutation-associated breast cancer: a cautionary tale of gene expression profiling. J Mammary Gland Biol Neoplasia 16(1):51–55

    PubMed  Google Scholar 

  121. Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 105(5):1680–1685

    PubMed  CAS  Google Scholar 

  122. Al-Wahiby S, Slijepcevic P (2005) Chromosomal aberrations involving telomeres in BRCA1 deficient human and mouse cell lines. Cytogenet Genome Res 109(4):491–496

    PubMed  CAS  Google Scholar 

  123. Miyoshi Y, Murase K, Oh K (2008) Basal-like subtype and BRCA1 dysfunction in breast cancers. Int J Clin Oncol 13(5):395–400

    PubMed  CAS  Google Scholar 

  124. Furuta S, Jiang X, Gu B, Cheng E, Chen PL, Lee WH (2005) Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc Natl Acad Sci USA 102(26):9176–9181

    PubMed  CAS  Google Scholar 

  125. O’Donovan PJ, Livingston DM (2010) BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 31(6):961–967

    PubMed  Google Scholar 

  126. Amir E, Seruga B, Serrano R, Ocana A (2010) Targeting DNA repair in breast cancer: a clinical and translational update. Cancer Treat Rev 36(7):557–565

    PubMed  CAS  Google Scholar 

  127. Evers B, Drost R, Schut E, de Bruin M, Van Der Burg E, Derksen PW, Holstege H, Liu X, van Drunen E, Beverloo HB et al (2008) Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res 14(12):3916–3925

    PubMed  CAS  Google Scholar 

  128. Ropolo M, Daga A, Griffero F, Foresta M, Casartelli G, Zunino A, Poggi A, Cappelli E, Zona G, Spaziante R et al (2009) Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Mol Cancer Res 7(3):383–392

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yin, H., Glass, J. (2013). DNA Repair Mechanisms in Breast Cancer Stem Cells. In: Mathews, L., Cabarcas, S., Hurt, E. (eds) DNA Repair of Cancer Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4590-2_6

Download citation

Publish with us

Policies and ethics