Skip to main content

The Role of Hypoxia-Inducible Factors in Oxygen Sensing by the Carotid Body

  • Conference paper
  • First Online:
Arterial Chemoreception

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 758))

Abstract

Chronic intermittent hypoxia (IH) associated with sleep-disordered breathing is an important cause of hypertension, which results from carotid body-mediated activation of the sympathetic nervous system. IH triggers increased levels of reactive oxygen species (ROS) in the carotid body, which induce increased synthesis and stability of hypoxia-inducible factor 1α (HIF-1α) and calpain-dependent degradation of HIF-2α. HIF-1 activates transcription of the Nox2 gene, encoding NADPH oxidase 2, which generates superoxide. Loss of HIF-2 activity leads to decreased transcription of the Sod2 gene, encoding manganese superoxide dismutase, which converts superoxide to hydrogen peroxide. Thus, IH disrupts the balance between HIF-1-dependent pro-oxidant and HIF-2-dependent anti-oxidant activities, and this loss of redox homeostasis underlies the pathogenesis of autonomic morbidities associated with IH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bao G, Metreveli N, Li R, Taylor A, Fletcher EC (1997) Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol 83:95–101

    PubMed  CAS  Google Scholar 

  • Bosch-Marcé M, Okuyama H, Wesley JB, Sarkar K, Kimura H, Liu YV, Zhang H, Strazza M, Rey S, Savino L, Zhou YF, McDonald KR, Na Y, Vandiver S, Rabi A, Shaked Y, Kerbel R, LaVallee T, Semenza GL (2007) Effects of aging and HIF-1 activity on angiogenic cell mobilization and recovery of perfusion following limb ischemia. Circ Res 101:1310–1318

    Article  PubMed  Google Scholar 

  • Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108:79–85

    Article  PubMed  CAS  Google Scholar 

  • Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL (2008) Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1α. Cardiovasc Res 77:463–470

    Article  PubMed  CAS  Google Scholar 

  • Dick TE, Hsieh YH, Wang N, Prabhakar NR (2007) Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol 92:87–97

    Article  PubMed  Google Scholar 

  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A 94:4273–4278

    Article  PubMed  CAS  Google Scholar 

  • Feinman R, Deitch EA, Watkins AC, Abungu B, Colorado I, Kannan KB, Sheth S, Caputo FJ, Lu Q, Ramanathan M, Attan S, Badami CJ, Doucet D, Barlos D, Bosch-Marcé M, Semenza GL, Xu DZ (2010) HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia reperfusion injury. Am J Physiol Gastrointest Liver Physiol 299:G833–G843

    Article  PubMed  CAS  Google Scholar 

  • Flamme I, Fröhlich T, von Reutern M, Kappel A, Damert A, Risau W (1997) HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels. Mech Dev 63:51–60

    Article  PubMed  CAS  Google Scholar 

  • Fletcher EC, Lesske J, Qian W, Miller CC 3rd, Unger T (1992) Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 19:555–561

    Article  PubMed  CAS  Google Scholar 

  • Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, Perdew GH, Bradfield CA (1997) Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272:8581–8593

    Article  PubMed  CAS  Google Scholar 

  • Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149–162

    Article  PubMed  CAS  Google Scholar 

  • Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1α. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272:19253–19260

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  PubMed  CAS  Google Scholar 

  • Kannan KB, Colorado I, Reino D, Palange D, Lu Q, Qin X, Watkins A, Caputo FJ, Semenza GL, Deitch EA, Feinman R (2011) Hypoxia-inducible factor plays a gut-injurious role in intestinal ischemia reperfusion injury. Am J Physiol Gastrointest Liver Physiol 300:G853–G861

    Article  PubMed  CAS  Google Scholar 

  • Keswani SC, Bosch-Marcé M, Reed N, Fischer A, Semenza GL, Hoke A (2011) Nitric oxide prevents axonal degeneration by inducing HIF-1-dependent expression of erythropoietin. Proc Natl Acad Sci U S A 108:4986–4990

    Article  PubMed  CAS  Google Scholar 

  • Khan SA, Nanduri J, Yuan G, Kinsman B, Kumar GK, Joseph J, Kalyanaraman B, Prabhakar NR (2011) NADPH oxidase 2 mediates intermittent hypoxia-induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid Redox Signal 14:533–542

    Article  PubMed  CAS  Google Scholar 

  • Kline DD, Peng Y, Manalo DJ, Semenza GL, Prabhakar NR (2002) Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. Proc Natl Acad Sci U S A 99:821–826

    Article  PubMed  CAS  Google Scholar 

  • Kumar GK, Rai V, Sharma SD, Ramakrishnan DP, Peng YJ, Souvannakitti D, Prabhakar NR (2006) Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol 575:229–239

    Article  PubMed  CAS  Google Scholar 

  • Lesske J, Fletcher EC, Bao G, Unger T (1997) Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system. J Hypertens 12:1593–1603

    Google Scholar 

  • Li J, Bosch-Marcé M, Nanayakkara A, Savransky V, Fried SK, Semenza GL, Polotsky VY (2006) Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor 1α. Physiol Genomics 25:450–457

    Article  PubMed  CAS  Google Scholar 

  • Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PW, Ratcliffe PJ, Schofield CJ (2011) The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep 12:63–70

    Article  PubMed  CAS  Google Scholar 

  • Nanduri J, Wang N, Yuan G, Khan SA, Souvannakitti D, Peng YJ, Kumar GK, Garcia JA, Prabhakar NR (2009) Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A 106:1199–1204

    Article  PubMed  CAS  Google Scholar 

  • Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, D’Agostino RB, Newman AB, Lebowitz MD, Pickering TG, Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, D’Agostino RB, Newman AB, Lebowitz MD, Pickering TG (2000) Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study, Sleep Heart Health Study. JAMA 283:1829–1836

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Yuan G, Ramakrishnan D, Sharma SD, Bosch-Marcé M, Kumar GK, Semenza GL, Prabhakar NR (2006) Heterozygous HIF-1α deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 577:705–716

    Article  PubMed  CAS  Google Scholar 

  • Peng YJ, Nanduri J, Yuan G, Wang N, Deneris E, Pendyala S, Natarajan V, Kumar GK, Prabhakar NR (2009) NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci 29:4903–4910

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Nanduri J, Khan SA, Yuan G, Wang N, Kinsman B, Vaddi DR, Kumar GK, Garcia JA, Semenza GL, Prabhakar NR (2011) Hypoxia-inducible factor 2α (HIF-2α) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A 108:3065–3070

    Article  PubMed  CAS  Google Scholar 

  • Peppard PE, Young T, Palta M, Skatrud J (2000) Prospective study of the association between sleep disordered breathing and hypertension. N Engl J Med 342:1378–1384

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar NR, Peng YJ, Jacono FJ, Kumar GK, Dick TE (2005) Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol 32:447–449

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar NR, Dick TE, Nanduri J, Kumar GK (2007a) Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Exp Physiol 92:39–44

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar NR, Kumar GK, Nanduri J, Semenza GL (2007b) ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal 9:1397–1403

    Article  PubMed  CAS  Google Scholar 

  • Ryan HE, Lo J, Johnson RS (1998) HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106

    Article  CAS  Google Scholar 

  • Semenza GL (2010) Oxygen homeostasis. Wiley Interdiscip RevSyst Bio Med 2:336–361

    Article  CAS  Google Scholar 

  • Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto J, O’Connor GT, Boland LL, Schwartz JE, Samet JM (2001) Sleep-disordered breathing and cardiovascular disease. Am J Respir Crit Care Med 163:19–25

    PubMed  CAS  Google Scholar 

  • Shimoda LA, Manalo DJ, Sham JSK, Semenza GL, Sylvester JT (2001) Partial HIF-1α deficiency impairs pulmonary arterial myocyte electrophysiological responses to chronic hypoxia. Am J Physiol 281:L202–L208

    CAS  Google Scholar 

  • Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL (2006) HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol 291:941–949

    Google Scholar 

  • Somers VK, Dyken ME, Clary MP, Abboud FM (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96:1897–1904

    Article  PubMed  CAS  Google Scholar 

  • Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Jiang B-H, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    Article  PubMed  CAS  Google Scholar 

  • Whitman EM, Pisarcik S, Luke T, Fallon M, Wang J, Sylvester JT, Semenza GL, Shimoda LA (2008) Endothelin-1 mediates hypoxia-induced inhibition of voltage-gated K+ channel expression in pulmonary arterial myocytes. Am J Physiol 294:309–310

    Google Scholar 

  • Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, Ratcliffe PJ, Maxwell PH (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor 1α. Blood 92:2260–2268

    PubMed  CAS  Google Scholar 

  • Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, Ponka P, Semenza GL, Schumacher A, Prchal JT (2006) HIF-1α deficiency results in dysregulated EPO signaling and iron homeostasis in mouse development. J Biol Chem 281:25703–25711

    Article  PubMed  CAS  Google Scholar 

  • Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JSK, Wiener CM, Sylvester JT, Semenza GL (1999) Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J Clin Invest 103:691–696

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Nanduri J, Bhasker RC, Semenza GL, Prabhakar NR (2005) Ca2+/calmodulin kinase-dependent activation of hypoxia-inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem 280:4321–4328

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR (2008) Induction of HIF-1α expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 217:674–685

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR (2011) Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol. doi:10.1002/jcp.22640, 2011 Feb 1 [Epub ahead of print]

  • Zhan G, Serrano F, Fenik P, Hsu R, Kong L, Pratico D, Klann E, Veasey SC (2005) NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Am J Respir Crit Care Med 172:921–929

    Article  PubMed  Google Scholar 

  • Zhang X, Liu L, Wei X, Tan YS, Tong L, Chang R, Ghanamah MS, Reinblatt M, Marti GP, Harmon JW, Semenza GL (2010) Impaired angiogenesis and mobilization of circulating angiogenic cells in HIF-1α heterozygous-null mice after burn wounding. Wound Repair Regen 18:193–201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research from authors’ laboratories was supported by contracts/grants HHS-N268201000032C, PO1-HL65608, P20-GM78494, RO1-HL55338, U54-CA143868 (G.L.S.) and HL-76537, HL-90554, and HL-86493 (N.R.P) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg L. Semenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Semenza, G.L., Prabhakar, N.R. (2012). The Role of Hypoxia-Inducible Factors in Oxygen Sensing by the Carotid Body. In: Nurse, C., Gonzalez, C., Peers, C., Prabhakar, N. (eds) Arterial Chemoreception. Advances in Experimental Medicine and Biology, vol 758. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4584-1_1

Download citation

Publish with us

Policies and ethics