Skip to main content

The RFC Clamp Loader: Structure and Function

  • Chapter
  • First Online:
The Eukaryotic Replisome: a Guide to Protein Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

The eukaryotic RFC clamp loader couples the energy of ATP hydrolysis to open and close the circular PCNA sliding clamp onto primed sites for use by DNA polymerases and repair factors. Structural studies reveal clamp loaders to be heteropentamers. Each subunit contains a region of homology to AAA+ proteins that defines two domains. The AAA+ domains form a right-handed spiral upon binding ATP. This spiral arrangement generates a DNA binding site within the center of RFC. DNA enters the central chamber through a gap between the AAA+ domains of two subunits. Specificity for a primed template junction is achieved by a third domain that blocks DNA, forcing it to bend sharply. Thus only DNA with a flexible joint can bind the central chamber. DNA entry also requires a slot in the PCNA clamp, which is opened upon binding the AAA+ domains of the clamp loader. ATP hydrolysis enables clamp closing and ejection of RFC, completing the clamp loading reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ason B, Handayani R, Williams CR, Bertram JG, Hingorani MM, O’Donnell M, Goodman MF, Bloom LB (2003) Mechanism of loading the Escherichia coli DNA polymerase III β sliding clamp on DNA. Bona fide primer/templates preferentially trigger the γ complex to hydrolyze ATP and load the clamp. J Biol Chem 278:10033–10040

    Article  PubMed  CAS  Google Scholar 

  • Ayyagari R, Impellizzeri KJ, Yoder BL, Gary SL, Burgers PM (1995) A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol Cell Biol 15:4420–4429

    PubMed  CAS  Google Scholar 

  • Ayyagari R, Gomes XV, Gordenin DA, Burgers PM (2003) Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J Biol Chem 278:1618–1625

    Article  PubMed  CAS  Google Scholar 

  • Bellaoui M, Chang M, Ou J, Xu H, Boone C, Brown GW (2003) Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J 22:4304–4313

    Article  PubMed  CAS  Google Scholar 

  • Ben-Aroya S, Koren A, Liefshitz B, Steinlauf R, Kupiec M (2003) ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C. Proc Natl Acad Sci U S A 100:9906–9911

    Article  PubMed  CAS  Google Scholar 

  • Benkovic SJ, Valentine AM, Salinas F (2001) Replisome-mediated DNA replication. Annu Rev Biochem 70:181–208

    Article  PubMed  CAS  Google Scholar 

  • Bertram JG, Bloom LB, Hingorani MM, Beechem JM, O’Donnell M, Goodman MF (2000) Molecular mechanism and energetics of clamp assembly in Escherichia coli. The role of ATP hydrolysis when γ complex loads β on DNA. J Biol Chem 275:28413–28420

    Article  PubMed  CAS  Google Scholar 

  • Bowman GD, O’Donnell M, Kuriyan J (2004) Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429:724–730

    Article  PubMed  CAS  Google Scholar 

  • Bowman GD, Goedken ER, Kazmirski SL, O’Donnell M, Kuriyan J (2005) DNA polymerase clamp loaders and DNA recognition. FEBS Lett 579:863–867

    Article  PubMed  CAS  Google Scholar 

  • Bunting KA, Roe SM, Pearl LH (2003) Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the β-clamp. EMBO J 22:5883–5892

    Article  PubMed  CAS  Google Scholar 

  • Bunz F, Kobayashi R, Stillman B (1993) cDNAs encoding the large subunit of human replication factor C. Proc Natl Acad Sci U S A 90:11014–11018

    Article  PubMed  CAS  Google Scholar 

  • Bylund GO, Burgers PM (2005) Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol 25:5445–5455

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Yao N, Gibbs E, Finkelstein J, Phillips B, O’Donnell M, Hurwitz J (1998) ATP hydrolysis catalyzed by human replication factor C requires participation of multiple subunits. Proc Natl Acad Sci U S A 95:11607–11612

    Article  PubMed  CAS  Google Scholar 

  • Cullmann G, Fien K, Kobayashi R, Stillman B (1995) Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol Cell Biol 15:4661–4671

    PubMed  CAS  Google Scholar 

  • Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA (2001) A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci U S A 98:11627–11632

    Article  PubMed  CAS  Google Scholar 

  • Davey MJ, Jeruzalmi D, Kuriyan J, O’Donnell M (2002) Motors and switches: AAA+ machines within the replisome. Nat Rev Mol Cell Biol 3:826–835

    Article  PubMed  CAS  Google Scholar 

  • Dore AS, Kilkenny ML, Jones SA, Oliver AW, Roe SM, Bell SD, Pearl LH (2006) Structure of an archaeal PCNA1-PCNA2-FEN1 complex: elucidating PCNA subunit and client enzyme specificity. Nucleic Acids Res 34:4515–4526

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, Ayyagari R, Gomes XV, Burgers PM (1997) Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase δ and DNA polymerase ε. Mol Cell Biol 17:6367–6378

    PubMed  CAS  Google Scholar 

  • Ellison V, Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol 1:E33

    Article  PubMed  Google Scholar 

  • Erzberger JP, Berger JM (2006) Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 35:93–114

    Article  PubMed  CAS  Google Scholar 

  • Fairman M, Prelich G, Tsurimoto T, Stillman B (1988) Identification of cellular components required for SV40 DNA replication in vitro. Biochim Biophys Acta 951:382–387

    Article  PubMed  CAS  Google Scholar 

  • Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, O’Donnell M (2008) Structure of a sliding clamp on DNA. Cell 132:43–54

    Article  PubMed  CAS  Google Scholar 

  • Goedken ER, Kazmirski SL, Bowman GD, O’Donnell M, Kuriyan J (2005) Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Nat Struct Mol Biol 12:183–190

    Article  PubMed  CAS  Google Scholar 

  • Gomes XV, Burgers PM (2000) Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J 19:3811–3821

    Article  PubMed  CAS  Google Scholar 

  • Gomes XV, Burgers PM (2001) ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem 276:34768–34775

    Article  PubMed  CAS  Google Scholar 

  • Gomes XV, Gary SL, Burgers PM (2000) Overproduction in Escherichia coli and characterization of yeast replication factor C lacking the ligase homology domain. J Biol Chem 275:14541–14549

    Article  PubMed  CAS  Google Scholar 

  • Gomes XV, Schmidt SL, Burgers PM (2001) ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J Biol Chem 276:34776–34783

    Article  PubMed  CAS  Google Scholar 

  • Grabowski B, Kelman Z (2003) Archaeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol 57:487–516

    Article  PubMed  CAS  Google Scholar 

  • Green CM, Erdjument-Bromage H, Tempst P, Lowndes NF (2000) A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr Biol 10:39–42

    Article  PubMed  CAS  Google Scholar 

  • Guenther B, Onrust R, Sali A, O’Donnell M, Kuriyan J (1997) Crystal structure of the δ′ subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91:335–345

    Article  PubMed  CAS  Google Scholar 

  • Gulbis JM, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J (1996) Structure of the C-terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell 87:297–306

    Article  PubMed  CAS  Google Scholar 

  • Jeruzalmi D, O’Donnell M, Kuriyan J (2001a) Crystal structure of the processivity clamp loader γ complex of E. coli DNA polymerase III. Cell 106:429–441

    Article  PubMed  CAS  Google Scholar 

  • Jeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O’Donnell M, Kuriyan J (2001b) Mechanism of processivity clamp opening by the δ subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106:417–428

    Article  PubMed  CAS  Google Scholar 

  • Johansson E, Garg P, Burgers PM (2004) The Pol32 subunit of DNA polymerase δ contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J Biol Chem 279:1907–1915

    Article  PubMed  CAS  Google Scholar 

  • Johnson A, O’Donnell M (2003) Ordered ATP hydrolysis in the γ complex clamp loader AAA+ machine. J Biol Chem 278:14406–14413

    Article  PubMed  CAS  Google Scholar 

  • Johnson A, O’Donnell M (2005) Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74:283–315

    Article  PubMed  CAS  Google Scholar 

  • Johnson A, Yao NY, Bowman GD, Kuriyan J, O’Donnell M (2006) The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading. J Biol Chem 281:35531–35543

    Article  PubMed  CAS  Google Scholar 

  • Jonsson ZO, Hindges R, Hubscher U (1998) Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J 17:2412–2425

    Article  PubMed  CAS  Google Scholar 

  • Kanellis P, Agyei R, Durocher D (2003) Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr Biol 13:1583–1595

    Article  PubMed  CAS  Google Scholar 

  • Kao HI, Bambara RA (2003) The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 38:433–452

    Article  PubMed  CAS  Google Scholar 

  • Kazmirski SL, Zhao Y, Bowman GD, O’Donnell M, Kuriyan J (2005) Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 102:13801–13806

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ab E, Bonvin AM, Siegal G (2010) Structure of the DNA-bound BRCA1 C-terminal region from human replication factor C p140 and model of the protein-DNA complex. J Biol Chem 285:10087–10097

    Article  PubMed  CAS  Google Scholar 

  • Kong XP, Onrust R, O’Donnell M, Kuriyan J (1992) Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69:425–437

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication. W. H. Freeman, New York

    Google Scholar 

  • Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Langston LD, O’Donnell M (2008) DNA polymerase δ is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J Biol Chem 283:29522–29531

    Article  PubMed  CAS  Google Scholar 

  • Laurence TA, Kwon Y, Johnson A, Hollars CW, O’Donnell M, Camarero JA, Barsky D (2008) Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. J Biol Chem 283:22895–22906

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Eki T, Hurwitz J (1989) Synthesis of DNA containing the simian virus 40 origin of replication by the combined action of DNA polymerases α and δ. Proc Natl Acad Sci U S A 86:7361–7365

    Article  PubMed  CAS  Google Scholar 

  • Leu FP, Hingorani MM, Turner J, O’Donnell M (2000) The δ subunit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in Escherichia coli. J Biol Chem 275:34609–34618

    Article  PubMed  CAS  Google Scholar 

  • Lindsey-Boltz LA, Bermudez VP, Hurwitz J, Sancar A (2001) Purification and characterization of human DNA damage checkpoint Rad complexes. Proc Natl Acad Sci U S A 98:11236–11241

    Article  PubMed  CAS  Google Scholar 

  • Majka J, Binz SK, Wold MS, Burgers PM (2006a) Replication protein A directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions. J Biol Chem 281:27855–27861

    Article  PubMed  CAS  Google Scholar 

  • Majka J, Niedziela-Majka A, Burgers PM (2006b) The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol Cell 24:891–901

    Article  PubMed  CAS  Google Scholar 

  • Matsumiya S, Ishino Y, Morikawa K (2001) Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci 10:17–23

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Gygi SP, Aebersold R, Hieter P (2001) Identification of RFCCtf18p, Ctf8p, Dcc1p: an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol Cell 7:959–970

    Article  PubMed  CAS  Google Scholar 

  • McNally R, Bowman GD, Goedken ER, O’Donnell M, Kuriyan J (2010) Analysis of the role of PCNA-DNA contacts during clamp loading. BMC Struct Biol 10:3

    Article  PubMed  Google Scholar 

  • Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K (2005) Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc Natl Acad Sci U S A 102:13795–13800

    Article  PubMed  CAS  Google Scholar 

  • Moarefi I, Jeruzalmi D, Turner J, O’Donnell M, Kuriyan J (2000) Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage. J Mol Biol 296:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Naktinis V, Turner J, O’Donnell M (1996) A molecular switch in a replication machine defined by an internal competition for protein rings. Cell 84:137–145

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    PubMed  CAS  Google Scholar 

  • O’Donnell M, Kuriyan J (2006) Clamp loaders and replication initiation. Curr Opin Struct Biol 16:35–41

    Article  PubMed  Google Scholar 

  • O’Donnell M, Onrust R, Dean FB, Chen M, Hurwitz J (1993) Homology in accessory proteins of replicative polymerases: E. coli to humans. Nucleic Acids Res 21:1–3

    Article  PubMed  Google Scholar 

  • Podust VN, Tiwari N, Ott R, Fanning E (1998) Functional interactions among the subunits of replication factor C potentiate and modulate its ATPase activity. J Biol Chem 273:12935–12942

    Article  PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SL, Gomes XV, Burgers PM (2001) ATP utilization by yeast replication factor C. III. The ATP-binding domains of Rfc2, Rfc3, and Rfc4 are essential for DNA recognition and clamp loading. J Biol Chem 276:34784–34791

    Article  PubMed  CAS  Google Scholar 

  • Shamoo Y, Steitz TA (1999) Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99:155–166

    Article  PubMed  CAS  Google Scholar 

  • Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O’Donnell M, Kuriyan J (2009) The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 137:659–671

    Article  PubMed  CAS  Google Scholar 

  • Sinha NK, Morris CF, Alberts BM (1980) Efficient in vitro replication of double-stranded DNA templates by a purified T4 bacteriophage replication system. J Biol Chem 255:4290–4293

    PubMed  CAS  Google Scholar 

  • Snyder AK, Williams CR, Johnson A, O’Donnell M, Bloom LB (2004) Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: II. Uncoupling the beta and DNA binding activities of the γ complex. J Biol Chem 279:4386–4393

    Article  PubMed  CAS  Google Scholar 

  • Song W, Pascal JM, Ellenberger T, Tomkinson AE (2009) The DNA binding domain of human DNA ligase I interacts with both nicked DNA and the DNA sliding clamps, PCNA and hRad9-hRad1-hHus1. DNA Repair 8:912–919

    Article  PubMed  CAS  Google Scholar 

  • Stewart J, Hingorani MM, Kelman Z, O’Donnell M (2001) Mechanism of β clamp opening by the δ subunit of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 276:19182–19189

    Article  PubMed  CAS  Google Scholar 

  • Stukenberg PT, Studwell-Vaughan PS, O’Donnell M (1991) Mechanism of the sliding β-clamp of DNA polymerase III holoenzyme. J Biol Chem 266:11328–11334

    PubMed  CAS  Google Scholar 

  • Turner J, Hingorani MM, Kelman Z, O’Donnell M (1999) The internal workings of a DNA polymerase clamp-loading machine. EMBO J 18:771–783

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F, Cai J, Gibbs E, O’Donnell M, Hurwitz J (1997) Deletion analysis of the large subunit p140 in human replication factor C reveals regions required for complex formation and replication activities. J Biol Chem 272:10058–10064

    Article  PubMed  CAS  Google Scholar 

  • Waga S, Stillman B (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369:207–212

    Article  PubMed  CAS  Google Scholar 

  • Warbrick E (2000) The puzzle of PCNA’s many partners. Bioessays 22:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Wijffels G, Dalrymple BP, Prosselkov P, Kongsuwan K, Epa VC, Lilley PE, Jergic S, Buchardt J, Brown SE, Alewood PF, Jennings PA, Dixon NE (2004) Inhibition of protein interactions with the β2 sliding clamp of Escherichia coli DNA polymerase III by peptides from β2-binding proteins. Biochemistry 43:5661–5671

    Article  PubMed  CAS  Google Scholar 

  • Williams CR, Snyder AK, Kuzmic P, O’Donnell M, Bloom LB (2004) Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: I. Two distinct activities for individual ATP sites in the γ complex. J Biol Chem 279:4376–4385

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Turner J, Kelman Z, Stukenberg PT, Dean F, Shechter D, Pan ZQ, Hurwitz J, O’Donnell M (1996) Clamp loading, unloading and intrinsic stability of the PCNA, β and gp45 sliding clamps of human, E. coli and T4 replicases. Genes Cells 1:101–113

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Coryell L, Zhang D, Georgescu RE, Finkelstein J, Coman MM, Hingorani MM, O’Donnell M (2003) Replication factor C clamp loader subunit arrangement within the circular pentamer and its attachment points to proliferating cell nuclear antigen. J Biol Chem 278:50744–50753

    Article  PubMed  CAS  Google Scholar 

  • Yao NY, Johnson A, Bowman GD, Kuriyan J, O’Donnell M (2006) Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. J Biol Chem 281:17528–17539

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Z, Yoder BL, Burgers PM, Benkovic SJ (2006) The structure of a ring-opened proliferating cell nuclear antigen-replication factor C complex revealed by fluorescence energy transfer. Proc Natl Acad Sci U S A 103:2546–2551

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Y. Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yao, N.Y., O’Donnell, M. (2012). The RFC Clamp Loader: Structure and Function. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_14

Download citation

Publish with us

Policies and ethics