Skip to main content

Homeotic Gene Regulation: A Paradigm for Epigenetic Mechanisms Underlying Organismal Development

  • Chapter
  • First Online:
Epigenetics: Development and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 61))

Abstract

The organization of eukaryotic genome into chromatin within the nucleus eventually dictates the cell type specific expression pattern of genes. This higher order of chromatin organization is established during development and dynamically maintained throughout the life span. Developmental mechanisms are conserved in bilaterians and hence they have body plan in common, which is achieved by regulatory networks controlling cell type specific gene expression. Homeotic genes are conserved in metazoans and are crucial for animal development as they specify cell type identity along the anterior-posterior body axis. Hox genes are the best studied in the context of epigenetic regulation that has led to significant understanding of the organismal development. Epigenome specific regulation is brought about by conserved chromatin modulating factors like PcG/trxG proteins during development and differentiation. Here we discuss the conserved epigenetic mechanisms relevant to homeotic gene regulation in metazoans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734

    Article  PubMed  CAS  Google Scholar 

  • Bantignies F, Grimaud C, Lavrov S, Gabut M, Cavalli G (2003) Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 17:2406–2420

    Article  PubMed  CAS  Google Scholar 

  • Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G (2011) Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144:214–226

    Article  PubMed  CAS  Google Scholar 

  • Beisel C, Paro R (2011) Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 12:123–135

    Article  PubMed  CAS  Google Scholar 

  • Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093

    Article  PubMed  CAS  Google Scholar 

  • Bender W, Akam M, Karch F, Beachy PA, Peifer M, Spierer P, Lewis EB, Hogness DS (1983) Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221:23–29

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  • Bhat KM, Farkas G, Karch F, Gyurkovics H, Gausz J, Schedl P (1996) The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division. Development 122:1113–1124

    PubMed  CAS  Google Scholar 

  • Blobel GA, Kadauke S, Wang E, Lau AW, Zuber J, Chou MM, Vakoc CR (2009) A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol Cell 36:970–983

    Article  PubMed  CAS  Google Scholar 

  • Boulet AM, Lloyd A, Sakonju S (1991) Molecular definition of the morphogenetic and regulatory functions and the cis-regulatory elements of the Drosophila Abd-B homeotic gene. Development 111:393–405

    PubMed  CAS  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    Article  PubMed  CAS  Google Scholar 

  • Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136

    Article  PubMed  CAS  Google Scholar 

  • Buxton PG, Kostakopoulou K, Brickell P, Thorogood P, Ferretti P (1997) Expression of the transcription factor slug correlates with growth of the limb bud and is regulated by FGF-4 and retinoic acid. Int J Dev Biol 41:559–568

    PubMed  CAS  Google Scholar 

  • Capelson M, Corces VG (2004) Boundary elements and nuclear organization. Biol Cell 96:617–629

    Article  PubMed  CAS  Google Scholar 

  • Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V (2004) The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18:2627–2638

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376:479

    Article  PubMed  CAS  Google Scholar 

  • Casanova M, Preissner T, Cerase A, Poot R, Yamada D, Li X, Appanah R, Bezstarosti K, Demmers J, Koseki H, Brockdorff N (2011) Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 138:1471–1482

    Article  PubMed  CAS  Google Scholar 

  • Celniker SE, Keelan DJ, Lewis EB (1989) The molecular genetics of the bithorax complex of Drosophila: characterization of the products of the Abdominal-B domain. Genes Dev 3:1424–1436

    Article  PubMed  CAS  Google Scholar 

  • Celniker SE, Sharma S, Keelan DJ, Lewis EB (1990) The molecular genetics of the bithorax complex of Drosophila: cis-regulation in the Abdominal-B domain. EMBO J 9:4277–4286

    PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004a) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004b) Does looping and clustering in the nucleus regulate gene expression? Curr Opin Cell Biol 16:256–262

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA (2005) Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132:2215–2223

    Article  PubMed  CAS  Google Scholar 

  • Chan CS, Rastelli L, Pirrotta V (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13:2553–2564

    PubMed  CAS  Google Scholar 

  • Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–785

    Article  PubMed  CAS  Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1978) Limb-somite relationship: effect of removal of somitic mesoderm on the wing musculature. J Embryol Exp Morphol 43:263–278

    PubMed  CAS  Google Scholar 

  • Chopra VS, Hong JW, Levine M (2009) Regulation of Hox gene activity by transcriptional elongation in Drosophila. Curr Biol 19:688–693

    Article  PubMed  CAS  Google Scholar 

  • Christen B, Bienz M (1994) Imaginal disc silencers from Ultrabithorax: evidence for Polycomb response elements. Mech Dev 48:255–266

    Article  PubMed  CAS  Google Scholar 

  • Chung JH, Whiteley M, Felsenfeld G (1993) A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74:505–514

    Article  PubMed  CAS  Google Scholar 

  • Conlon RA (1995) Retinoic acid and pattern formation in vertebrates. Trends Genet 11:314–319

    Article  PubMed  CAS  Google Scholar 

  • Dahanukar A, Wharton RP (1996) The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev 10:2610–2620

    Article  PubMed  CAS  Google Scholar 

  • Dale L, Jones CM (1999) BMP signalling in early Xenopus development. Bioessays 21:751–760

    Article  PubMed  CAS  Google Scholar 

  • Dekker EJ, Pannese M, Houtzager E, Boncinelli E, Durston A (1993) Colinearity in the Xenopus laevis Hox-2 complex. Mech Dev 40:3–12

    Article  PubMed  CAS  Google Scholar 

  • Denis H, Lacroix JC (1993) The dichotomy between germ line and somatic line, and the origin of cell mortality. Trends Genet 9:7–11

    Article  PubMed  CAS  Google Scholar 

  • Dickinson ME, McMahon AP (1992) The role of Wnt genes in vertebrate development. Curr Opin Genet Dev 2:562–566

    Article  PubMed  CAS  Google Scholar 

  • Dorsett D (1999) Distant liaisons: long-range enhancer-promoter interactions in Drosophila. Curr Opin Genet Dev 9:505–514

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Nusslein-Volhard C (1988a) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Nusslein-Volhard C (1988b) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104

    Article  PubMed  CAS  Google Scholar 

  • Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development Suppl:135–142

    Google Scholar 

  • Duboule D (2007) The rise and fall of Hox gene clusters. Development 134:2549–2560

    Article  PubMed  CAS  Google Scholar 

  • Duncan I (1987) The bithorax complex. Annu Rev Genet 21:285–319

    Article  PubMed  CAS  Google Scholar 

  • Ebralidse KK, Grachev SA, Mirzabekov AD (1988) A highly basic histone H4 domain bound to the sharply bent region of nucleosomal DNA. Nature 331:365–367

    Article  PubMed  CAS  Google Scholar 

  • Endoh M, Endo TA, Endoh T, Fujimura Y, Ohara O, Toyoda T, Otte AP, Okano M, Brockdorff N, Vidal M, Koseki H (2008) Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135:1513–1524

    Article  PubMed  CAS  Google Scholar 

  • Ferraiuolo MA, Rousseau M, Miyamoto C, Shenker S, Wang XQ, Nadler M, Blanchette M, Dostie J (2010) The three-dimensional architecture of Hox cluster silencing. Nucleic Acids Res 38:7472–7484

    Article  PubMed  CAS  Google Scholar 

  • Flam F (1994) Hints of a language in junk DNA. Science 266:1320

    Article  PubMed  CAS  Google Scholar 

  • Fromental-Ramain C, Warot X, Messadecq N, LeMeur M, Dolle P, Chambon P (1996) Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122:2997–3011

    PubMed  CAS  Google Scholar 

  • Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7:703–713

    Article  PubMed  CAS  Google Scholar 

  • Gaunt SJ (1994) Conservation in the Hox code during morphological evolution. Int J Dev Biol 38:549–552

    PubMed  CAS  Google Scholar 

  • Gaunt SJ, Strachan L (1996) Temporal colinearity in expression of anterior Hox genes in developing chick embryos. Dev Dyn 207:270–280

    Article  PubMed  CAS  Google Scholar 

  • Gause M, Morcillo P, Dorsett D (2001) Insulation of enhancer-promoter communication by a gypsy transposon insert in the Drosophila cut gene: cooperation between suppressor of hairy-wing and modifier of mdg4 proteins. Mol Cell Biol 21:4807–4817

    Article  PubMed  CAS  Google Scholar 

  • Gehring WJ, Hiromi Y (1986) Homeotic genes and the homeobox. Annu Rev Genet 20:147–173

    Article  PubMed  CAS  Google Scholar 

  • Gerard M, Zakany J, Duboule D (1997) Interspecies exchange of a Hoxd enhancer in vivo induces premature transcription and anterior shift of the sacrum. Dev Biol 190:32–40

    Article  PubMed  CAS  Google Scholar 

  • Gerasimova TI, Corces VG (2001) Chromatin insulators and boundaries: effects on transcription and nuclear organization. Annu Rev Genet 35:193–208

    Article  PubMed  CAS  Google Scholar 

  • Gillespie RF, Gudas LJ (2007) Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. J Mol Biol 372:298–316

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    PubMed  CAS  Google Scholar 

  • Gohl D, Aoki T, Blanton J, Shanower G, Kappes G, Schedl P (2011) Mechanism of chromosomal boundary action: roadblock, sink, or loop? Genetics 187:731–748

    Article  PubMed  CAS  Google Scholar 

  • Goodman F, Giovannucci-Uzielli ML, Hall C, Reardon W, Winter R, Scambler P (1998) Deletions in HOXD13 segregate with an identical, novel foot malformation in two unrelated families. Am J Hum Genet 63:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Gould A, Morrison A, Sproat G, White RA, Krumlauf R (1997) Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 11:900–913

    Article  PubMed  CAS  Google Scholar 

  • Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88

    Article  PubMed  CAS  Google Scholar 

  • Hanson RD, Hess JL, Yu BD, Ernst P, van Lohuizen M, Berns A, van der Lugt NM, Shashikant CS, Ruddle FH, Seto M, Korsmeyer SJ (1999) Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci USA 96:14372–14377

    Article  PubMed  CAS  Google Scholar 

  • Herault Y, Beckers J, Gerard M, Duboule D (1999) Hox gene expression in limbs: colinearity by opposite regulatory controls. Dev Biol 208:157–165

    Article  PubMed  CAS  Google Scholar 

  • Hernandez RE, Putzke AP, Myers JP, Margaretha L, Moens CB (2007) Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 134:177–187

    Article  PubMed  CAS  Google Scholar 

  • Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6:432–438

    Article  PubMed  CAS  Google Scholar 

  • Holland PW, Holland LZ, Williams NA, Holland ND (1992) An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development 116:653–661

    PubMed  CAS  Google Scholar 

  • Holstege JC, de Graaff W, Hossaini M, Cano SC, Jaarsma D, van den Akker E, Deschamps J (2008) Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice. Proc Natl Acad Sci U S A 105:6338–6343

    Article  PubMed  CAS  Google Scholar 

  • Horton C, Maden M (1995) Endogenous distribution of retinoids during normal development and teratogenesis in the mouse embryo. Dev Dyn 202:312–323

    Article  PubMed  CAS  Google Scholar 

  • Hsieh JJ, Cheng EH, Korsmeyer SJ (2003) Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115:293–303

    Article  PubMed  CAS  Google Scholar 

  • Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, Hayes DN, Shanmugam KS, Bhattacharjee A, Biondi CA, Kay GF, Hayward NK, Hess JL, Meyerson M (2004) Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13:587–597

    Article  PubMed  CAS  Google Scholar 

  • Iimura T, Denans N, Pourquie O (2009) Establishment of Hox vertebral identities in the embryonic spine precursors. Curr Top Dev Biol 88:201–234

    Article  PubMed  CAS  Google Scholar 

  • Iqbal H, Mishra R (2007) Chromatin domain boundaries: defining the functional domains in genome. Proc Indian Natl Sci Acad 73:239–253

    CAS  Google Scholar 

  • Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK, Hermanson O, Rosenfeld MG (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450:415–419

    Article  PubMed  CAS  Google Scholar 

  • Joo HY, Zhai L, Yang C, Nie S, Erdjument-Bromage H, Tempst P, Chang C, Wang H (2007) Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449:1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Juan AH, Ruddle FH (2003) Enhancer timing of Hox gene expression: deletion of the endogenous Hoxc8 early enhancer. Development 130:4823–4834

    Article  PubMed  CAS  Google Scholar 

  • Karch F, Weiffenbach B, Peifer M, Bender W, Duncan I, Celniker S, Crosby M, Lewis EB (1985) The abdominal region of the bithorax complex. Cell 43:81–96

    Article  PubMed  CAS  Google Scholar 

  • Karch F, Galloni M, Sipos L, Gausz J, Gyurkovics H, Schedl P (1994) Mcp and Fab-7: molecular analysis of putative boundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. Nucleic Acids Res 22:3138–3146

    Article  PubMed  CAS  Google Scholar 

  • Kashyap V, Gudas LJ, Brenet F, Funk P, Viale A, Scandura JM (2011) Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem 286:3250–3260

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Chambon P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83:859–869

    Article  PubMed  CAS  Google Scholar 

  • Katsube K, Sakamoto K, Tamamura Y, Yamaguchi A (2009) Role of CCN, a vertebrate specific gene family, in development. Dev Growth Differ 51:55–67

    Article  PubMed  CAS  Google Scholar 

  • Kennison JA (1995) The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet 29:289–303

    Article  PubMed  CAS  Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104

    Article  PubMed  CAS  Google Scholar 

  • Klebes A, Sustar A, Kechris K, Li H, Schubiger G, Kornberg TB (2005) Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development 132:3753–3765

    Article  PubMed  CAS  Google Scholar 

  • Kmita M, van Der Hoeven F, Zakany J, Krumlauf R, Duboule D (2000) Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex. Genes Dev 14:198–211

    PubMed  CAS  Google Scholar 

  • Kmita M, Fraudeau N, Herault Y, Duboule D (2002a) Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 420:145–150

    Article  PubMed  CAS  Google Scholar 

  • Kmita M, Tarchini B, Duboule D, Herault Y (2002b) Evolutionary conserved sequences are required for the insulation of the vertebrate Hoxd complex in neural cells. Development 129:5521–5528

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Duboule D (1999) Breaking colinearity in the mouse HoxD complex. Cell 97:407–417

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Dolle P, Zakany J, Duboule D (1996) Function of posterior HoxD genes in the morphogenesis of the anal sphincter. Development 122:2651–2659

    PubMed  CAS  Google Scholar 

  • Kondo T, Zakany J, Duboule D (1998) Control of colinearity in AbdB genes of the mouse HoxD complex. Mol Cell 1:289–300

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf R (1992) Evolution of the vertebrate Hox homeobox genes. Bioessays 14:245–252

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    Article  PubMed  CAS  Google Scholar 

  • Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS, Adli M, Kasif S, Ptaszek LM, Cowan CA, Lander ES, Koseki H, Bernstein BE (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4:e1000242

    Article  PubMed  CAS  Google Scholar 

  • Kudoh T, Wilson SW, Dawid IB (2002) Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129:4335–4346

    PubMed  CAS  Google Scholar 

  • Kuhn EJ, Geyer PK (2003) Genomic insulators: connecting properties to mechanism. Curr Opin Cell Biol 15:259–265

    Article  PubMed  CAS  Google Scholar 

  • Lagarou A, Mohd-Sarip A, Moshkin YM, Chalkley GE, Bezstarosti K, Demmers JA, Verrijzer CP (2008) dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev 22:2799–2810

    Article  PubMed  CAS  Google Scholar 

  • Lambert SF, Thomas JO (1986) Lysine-containing DNA-binding regions on the surface of the histone octamer in the nucleosome core particle. Eur J Biochem 160:191–201

    Article  PubMed  CAS  Google Scholar 

  • Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E, Roberts TM, Chang HY, Shi Y (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449:689–694

    Article  PubMed  CAS  Google Scholar 

  • Landeira D, Sauer S, Poot R, Dvorkina M, Mazzarella L, Jorgensen HF, Pereira CF, Leleu M, Piccolo FM, Spivakov M, Brookes E, Pombo A, Fisher C, Skarnes WC, Snoek T, Bezstarosti K, Demmers J, Klose RJ, Casanova M, Tavares L, Brockdorff N, Merkenschlager M, Fisher AG (2010) Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol 12:618–624

    Article  PubMed  CAS  Google Scholar 

  • Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Lee KK (1992) The regulative potential of the limb region in 11.5-day rat embryos following the amputation of the fore-limb bud. Anat Embryol (Berl) 186:67–74

    Article  CAS  Google Scholar 

  • Lee KK, Chan WY (1991) A study on the regenerative potential of partially excised mouse embryonic fore-limb bud. Anat Embryol (Berl) 184:153–157

    Article  CAS  Google Scholar 

  • Lee N, Maurange C, Ringrose L, Paro R (2005) Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438:234–237

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Di Croce L, Shiekhattar R (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–450

    Article  PubMed  CAS  Google Scholar 

  • Leid M, Kastner P, Chambon P (1992) Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci 17:427–433

    Article  PubMed  CAS  Google Scholar 

  • Levine M, Hoey T (1988) Homeobox proteins as sequence-specific transcription factors. Cell 55:537–540

    Article  PubMed  CAS  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  PubMed  CAS  Google Scholar 

  • Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D (2010) Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 24:368–380

    Article  PubMed  CAS  Google Scholar 

  • Li HB, Muller M, Bahechar IA, Kyrchanova O, Ohno K, Georgiev P, Pirrotta V (2011) Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster. Mol Cell Biol 31:616–625

    Article  PubMed  CAS  Google Scholar 

  • Lipshitz HD, Peattie DA, Hogness DS (1987) Novel transcripts from the Ultrabithorax domain of the bithorax complex. Genes Dev 1:307–322

    Article  PubMed  CAS  Google Scholar 

  • Lutz B, Lu HC, Eichele G, Miller D, Kaufman TC (1996) Rescue of Drosophila labial null mutant by the chicken ortholog Hoxb-1 demonstrates that the function of Hox genes is phylogenetically conserved. Genes Dev 10:176–184

    Article  PubMed  CAS  Google Scholar 

  • Maconochie M, Nonchev S, Morrison A, Krumlauf R (1996) Paralogous Hox genes: function and regulation. Annu Rev Genet 30:529–556

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F (1988) Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature 335:733–735

    Article  PubMed  CAS  Google Scholar 

  • Maeda RK, Karch F (2006) The ABC of the BX-C: the bithorax complex explained. Development 133:1413

    Article  PubMed  CAS  Google Scholar 

  • Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ 3rd, Voigt P, Martin SR, Taylor WR, De Marco V, Pirrotta V, Reinberg D, Gamblin SJ (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767

    Article  PubMed  CAS  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2004) Retinoic acid signalling in the development of branchial arches. Curr Opin Genet Dev 14:591–598

    Article  PubMed  CAS  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46:451–480

    Article  PubMed  CAS  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 7:e002

    PubMed  Google Scholar 

  • Martin C, Cao R, Zhang Y (2006) Substrate preferences of the EZH2 histone methyltransferase complex. J Biol Chem 281:8365–8370

    Article  PubMed  CAS  Google Scholar 

  • Matharu NK, Hussain T, Sankaranarayanan R, Mishra RK (2010) Vertebrate homologue of Drosophila GAGA factor. J Mol Biol 400:434–447

    Article  PubMed  CAS  Google Scholar 

  • Maurange C, Lee N, Paro R (2006) Signaling meets chromatin during tissue regeneration in Drosophila. Curr Opin Genet Dev 16:485–489

    Article  PubMed  CAS  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    Article  PubMed  CAS  Google Scholar 

  • Mihaly J, Hogga I, Barges S, Galloni M, Mishra RK, Hagstrom K, Muller M, Schedl P, Sipos L, Gausz J, Gyurkovics H, Karch F (1998) Chromatin domain boundaries in the Bithorax complex. Cell Mol Life Sci 54:60–70

    Article  PubMed  CAS  Google Scholar 

  • Milinkovitch MC, Helaers R, Tzika AC (2010) Historical constraints on vertebrate genome evolution. Genome Biol Evol 2:13–18

    Article  CAS  Google Scholar 

  • Minsky N, Shema E, Field Y, Schuster M, Segal E, Oren M (2008) Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol 10:483–488

    Article  PubMed  CAS  Google Scholar 

  • Mishra RK, Karch F (1999) Boundaries that demarcate structural and functional domains of chromatin. J Biosci 24:377–399

    Article  CAS  Google Scholar 

  • Mishra RK, Yamagishi T, Vasanthi D, Ohtsuka C, Kondo T (2007) Involvement of polycomb-group genes in establishing HoxD temporal colinearity. Genesis 45:570–576

    Article  PubMed  CAS  Google Scholar 

  • Mohd-Sarip A, van der Knaap JA, Wyman C, Kanaar R, Schedl P, Verrijzer CP (2006) Architecture of a polycomb nucleoprotein complex. Mol Cell 24:91–100

    Article  PubMed  CAS  Google Scholar 

  • Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schubeler D (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30:755–766

    Article  PubMed  CAS  Google Scholar 

  • Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13:157–162

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Filippova G, Loukinov D, Pugacheva E, Chen Q, Smith ST, Munhall A, Grewe B, Bartkuhn M, Arnold R, Burke LJ, Renkawitz-Pohl R, Ohlsson R, Zhou J, Renkawitz R, Lobanenkov V (2005) CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator. EMBO Rep 6:165–170

    Article  PubMed  CAS  Google Scholar 

  • Morey C, Da Silva NR, Perry P, Bickmore WA (2007) Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134:909–919

    Article  PubMed  CAS  Google Scholar 

  • Morey C, Da Silva NR, Kmita M, Duboule D, Bickmore WA (2008) Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into Hoxd. J Cell Sci 121:571–577

    Article  PubMed  CAS  Google Scholar 

  • Muragaki Y, Mundlos S, Upton J, Olsen BR (1996) Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272:548–551

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11:709–719

    Article  PubMed  CAS  Google Scholar 

  • Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki S, Levine M (1998) GAGA mediates the enhancer blocking activity of the eve promoter in the Drosophila embryo. Genes Dev 12:3325–3330

    Article  PubMed  CAS  Google Scholar 

  • Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  PubMed  CAS  Google Scholar 

  • Pasini D, Hansen KH, Christensen J, Agger K, Cloos PA, Helin K (2008) Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and polycomb-repressive complex 2. Genes Dev 22:1345–1355

    Article  PubMed  CAS  Google Scholar 

  • Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Bak M, Tommerup N, Rappsilber J, Helin K (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464:306–310

    Article  PubMed  CAS  Google Scholar 

  • Pathak RU, Rangaraj N, Kallappagoudar S, Mishra K, Mishra RK (2007) Boundary element-associated factor 32B connects chromatin domains to the nuclear matrix. Mol Cell Biol 27:4796–4806

    Article  PubMed  CAS  Google Scholar 

  • Raab JR, Kamakaka RT (2010) Insulators and promoters: closer than we think. Nat Rev Genet 11:439–446

    Article  PubMed  CAS  Google Scholar 

  • Ragoczy T, Bender MA, Telling A, Byron R, Groudine M (2006) The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Richly H, Rocha-Viegas L, Ribeiro JD, Demajo S, Gundem G, Lopez-Bigas N, Nakagawa T, Rospert S, Ito T, Di Croce L (2010) Transcriptional activation of polycomb-repressed genes by ZRF1. Nature 468:1124–1128

    Article  PubMed  CAS  Google Scholar 

  • Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38:413–443

    Article  PubMed  CAS  Google Scholar 

  • Ringrose L, Rehmsmeier M, Dura JM, Paro R (2003) Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev Cell 5:759–771

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Sarras MP Jr, Yan L, Leontovich A, Zhang JS (2002) Structure, expression, and developmental function of early divergent forms of metalloproteinases in hydra. Cell Res 12:163–176

    Article  PubMed  Google Scholar 

  • Saunders A, Werner J, Andrulis ED, Nakayama T, Hirose S, Reinberg D, Lis JT (2003) Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301:1094–1096

    Article  PubMed  CAS  Google Scholar 

  • Savla U, Benes J, Zhang J, Jones RS (2008) Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 135:813–817

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW, Muller J (2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465:243–247

    Article  PubMed  CAS  Google Scholar 

  • Schier AF, Talbot WS (2005) Molecular genetics of axis formation in zebrafish. Annu Rev Genet 39:561–613

    Article  PubMed  CAS  Google Scholar 

  • Schmitt S, Prestel M, Paro R (2005) Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev 19:697–708

    Article  PubMed  CAS  Google Scholar 

  • Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L, Koseki H, Jenuwein T, Wutz A (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25:3110–3122

    Article  PubMed  CAS  Google Scholar 

  • Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M, Pirrotta V (2006) Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38:700–705

    Article  PubMed  CAS  Google Scholar 

  • Scott MP, Tamkun JW, Hartzell GW 3rd (1989) The structure and function of the homeodomain. Biochim Biophys Acta 989:25–48

    PubMed  CAS  Google Scholar 

  • Senthilkumar R, Mishra RK (2009) Novel motifs distinguish multiple homologues of Polycomb in vertebrates: expansion and diversification of the epigenetic toolkit. BMC Genomics 10:549

    Article  PubMed  CAS  Google Scholar 

  • Sessa L, Breiling A, Lavorgna G, Silvestri L, Casari G, Orlando V (2007) Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA 13:223–239

    Article  PubMed  CAS  Google Scholar 

  • Sharpe J, Nonchev S, Gould A, Whiting J, Krumlauf R (1998) Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J 17:1788–1798

    Article  PubMed  CAS  Google Scholar 

  • Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Chiang A, Bender W, Shimell MJ, O’Connor M (1993) Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 158:131–144

    Article  PubMed  CAS  Google Scholar 

  • Sing A, Pannell D, Karaiskakis A, Sturgeon K, Djabali M, Ellis J, Lipshitz HD, Cordes SP (2009) A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138:885–897

    Article  PubMed  CAS  Google Scholar 

  • Slack JM (1990) Growth factors as inducing agents in early Xenopus development. J Cell Sci 13(Suppl):119–130

    CAS  Google Scholar 

  • Soshnikova N, Duboule D (2009) Epigenetic temporal control of mouse Hox genes in vivo. Science 324:1320–1323

    Article  PubMed  CAS  Google Scholar 

  • Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher AG, Pombo A (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9:1428–1435

    Article  PubMed  CAS  Google Scholar 

  • Stratford T, Horton C, Maden M (1996) Retinoic acid is required for the initiation of outgrowth in the chick limb bud. Curr Biol 6:1124–1133

    Article  PubMed  CAS  Google Scholar 

  • Suganuma T, Workman JL (2008) Crosstalk among histone modifications. Cell 135:604–607

    Article  PubMed  CAS  Google Scholar 

  • Sutherland H, Bickmore WA (2009) Transcription factories: gene expression in unions? Nat Rev Genet 10:457–466

    Article  PubMed  CAS  Google Scholar 

  • Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143:390–403

    Article  PubMed  CAS  Google Scholar 

  • Tillib S, Petruk S, Sedkov Y, Kuzin A, Fujioka M, Goto T, Mazo A (1999) Trithorax- and Polycomb-group response elements within an Ultrabithorax transcription maintenance unit consist of closely situated but separable sequences. Mol Cell Biol 19:5189–5202

    PubMed  CAS  Google Scholar 

  • Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schubeler D, Baylin SB (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6:2911–2927

    Article  PubMed  CAS  Google Scholar 

  • Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10:1453–1465

    Article  PubMed  CAS  Google Scholar 

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela L, Kamakaka RT (2006) Chromatin insulators. Annu Rev Genet 40:107–138

    Article  PubMed  CAS  Google Scholar 

  • van den Akker E, Fromental-Ramain C, de Graaff W, Le Mouellic H, Brulet P, Chambon P, Deschamps J (2001) Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes. Development 128:1911–1921

    PubMed  Google Scholar 

  • Vasanthi D, Mishra RK (2008) Epigenetic regulation of genes during development: a conserved theme from flies to mammals. J Genet Genomics 35:413–429

    Article  PubMed  CAS  Google Scholar 

  • Vasanthi D, Anant M, Srivastava S, Mishra RK (2010) A functionally conserved boundary element from the mouse HoxD locus requires GAGA factor in Drosophila. Development 137:4239–4247

    Article  PubMed  CAS  Google Scholar 

  • Vastenhouw NL, Zhang Y, Woods IG, Imam F, Regev A, Liu XS, Rinn J, Schier AF (2010) Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464:922–926

    Article  PubMed  CAS  Google Scholar 

  • Vazquez J, Farkas G, Gaszner M, Udvardy A, Muller M, Hagstrom K, Gyurkovics H, Sipos L, Gausz J, Galloni M et al (1993) Genetic and molecular analysis of chromatin domains. Cold Spring Harb Symp Quant Biol 58:45–54

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Chiang JH, Lin CH, Arens CE, Saleem RA, Smith JJ, Aitchison JD (2010) Histone chaperone Chz1p regulates H2B ubiquitination and subtelomeric anti-silencing. Nucleic Acids Res 38:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878

    Article  PubMed  CAS  Google Scholar 

  • Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367

    Article  PubMed  CAS  Google Scholar 

  • West AG, Gaszner M, Felsenfeld G (2002) Insulators: many functions, many mechanisms. Genes Dev 16:271–288

    Article  PubMed  CAS  Google Scholar 

  • Woo CJ, Kingston RE (2007) HOTAIR lifts noncoding RNAs to new levels. Cell 129:1257–1259

    Article  PubMed  CAS  Google Scholar 

  • Woo CJ, Kharchenko PV, Daheron L, Park PJ, Kingston RE (2010) A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140:99–110

    Article  PubMed  CAS  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun YE (2010) Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329:444–448

    Article  PubMed  CAS  Google Scholar 

  • Wysocka J, Milne TA, Allis CD (2005) Taking LSD 1 to a new high. Cell 122:654–658

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi T, Ozawa M, Ohtsuka C, Ohyama-Goto R, Kondo T (2007) Evx2-Hoxd13 intergenic region restricts enhancer association to Hoxd13 promoter. PLoS One 2:e175

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Rossant J (1995) Fibroblast growth factors in mammalian development. Curr Opin Genet Dev 5:485–491

    Article  PubMed  CAS  Google Scholar 

  • Zakany J, Gerard M, Favier B, Duboule D (1997) Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO J 16:4393–4402

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40:939–953

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Zhu P, Wang J, Pascual G, Ohgi KA, Lozach J, Glass CK, Rosenfeld MG (2008) Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 29:69–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Matharu, N.K., Dasari, V., Mishra, R.K. (2013). Homeotic Gene Regulation: A Paradigm for Epigenetic Mechanisms Underlying Organismal Development. In: Kundu, T. (eds) Epigenetics: Development and Disease. Subcellular Biochemistry, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4525-4_9

Download citation

Publish with us

Policies and ethics