Skip to main content

Role of DNA Methyltransferases in Epigenetic Regulation in Bacteria

  • Chapter
  • First Online:
Epigenetics: Development and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 61))

Abstract

In prokaryotes, alteration in gene expression was observed with the modification of DNA, especially DNA methylation. Such changes are inherited from generation to generation with no alterations in the DNA sequence and represent the epigenetic signal in prokaryotes. DNA methyltransferases are enzymes involved in DNA modification and thus in epigenetic regulation of gene expression. DNA methylation not only affects the thermodynamic stability of DNA, but also changes its curvature. Methylation of specific residues on DNA can affect the protein-DNA interactions. DNA methylation in prokaryotes regulates a number of physiological processes in the bacterial cell including transcription, DNA mismatch repair and replication initiation. Significantly, many reports have suggested a role of DNA methylation in regulating the expression of a number of genes in virulence and pathogenesis thus, making DNA methlytransferases novel targets for the designing of therapeutics. Here, we summarize the current knowledge about the influence of DNA methylation on gene regulation in different bacteria, and on bacterial virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk-Poplawska M, Lower M, Piekarowicz A (2009) Characterization of the NgoAXP: phase-variable type III restriction-modification system in Neisseria gonorrhoeae. FEMS Microbiol Lett 300:25–35

    PubMed  CAS  Google Scholar 

  • Alm RA, Ling LSL, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trost TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180

    PubMed  Google Scholar 

  • Ando T, Ishiguro K, Watanabe O, Miyake N, Kato T, Hibi S, Mimura S, Nakamura M, Miyahara R, Ohmiya N, Niwa Y, Goto H (2010) Restriction-modification systems may be associated with Helicobacter pylori virulence. J Gastroenterol Hepatol 1:S95–S98

    Google Scholar 

  • Arber W (2000) Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7

    PubMed  CAS  Google Scholar 

  • Arber W (2002) Evolution of prokaryotic genomes. Curr Top Microbiol Immunol 264:1–14

    PubMed  CAS  Google Scholar 

  • Arber W, Dussoix D (1962) Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J Mol Biol 5:18–36

    PubMed  CAS  Google Scholar 

  • Au KG, Welsh K, Modrich P (1992) Initiation of methyl-directed mismatch repair. J Biol Chem 267:12142–12148

    PubMed  CAS  Google Scholar 

  • Barbeyron T, Kean K, Forterre P (1984) DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J Bacteriol 160:586–590

    PubMed  CAS  Google Scholar 

  • Bell DC, Cupples CG (2001) Very-short-patch repair in Escherichia coli requires the dam adenine methylase. J Bacteriol 183:3631–3635

    PubMed  CAS  Google Scholar 

  • Bergerat A, Kriebardis A, Guschlbauer W (1989) Preferential site-specific hemimethylation of GATC sites in pBR322 DNA by Dam methyltransferase from Escherichia coli. J Biol Chem 264:4064–4070

    PubMed  CAS  Google Scholar 

  • Bertani G, Weigle JJ (1953) Host controlled variation in bacterial viruses. J Bacteriol 65:113–121

    PubMed  CAS  Google Scholar 

  • Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    PubMed  CAS  Google Scholar 

  • Bheemanaik S, Reddy YV, Rao DN (2006) Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem J 399:177–190

    PubMed  CAS  Google Scholar 

  • Bickle TA, Kruger DH (1993) Biology of DNA restriction. Microbiol Rev 57:434–450

    PubMed  CAS  Google Scholar 

  • Blaisdell BE, Campbell AM, Karlin S (1996) Similarities and dissimilarities of phage genomes. Proc Natl Acad Sci USA 93:5854–5859

    PubMed  CAS  Google Scholar 

  • Bogan JA, Helmstetter CE (1997) DNA sequestration and transcription in the oriC region of Escherichia coli. Mol Microbiol 26:889–896

    PubMed  CAS  Google Scholar 

  • Braaten BA, Nou X, Kaltenbach LS, Low DA (1994) Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76:577–588

    PubMed  CAS  Google Scholar 

  • Braun RE, O’Day K, Wright A (1985) Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 40:159–169

    PubMed  CAS  Google Scholar 

  • Broadbent SE, Davies MR, van der Woude MW (2010) Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism. Microbiology 77:337–353

    CAS  Google Scholar 

  • Bucci C, Lavitola A, Salvatore P, Del Giudice L, Massardo DR, Bruni CB, Alifano P (1999) Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell 3:435–445

    PubMed  CAS  Google Scholar 

  • Bujnicki JM (2002) Sequence permutations in the molecular evolution of DNA methyltransferases. BMC Evol Biol 2:3

    PubMed  Google Scholar 

  • Bujnicki JM, Radlinska M (1999) Molecular evolution of DNA-(−cytosine N4) methyltransferases: evidence for their polyphyletic origin. Nucleic Acids Res 27:4501–4509

    PubMed  CAS  Google Scholar 

  • Calmann MA, Marinus MG (2003) Regulated expression of the Escherichia coli dam gene. J Bacteriol 185:5012–5014

    PubMed  CAS  Google Scholar 

  • Camacho EM, Casadesus J (2002) Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol 44:1589–1598

    PubMed  CAS  Google Scholar 

  • Campbell JL, Kleckner N (1990) E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62:967–979

    PubMed  CAS  Google Scholar 

  • Carlson K, Kosturko LD (1998) Endonuclease II of coliphage T4: a recombinase disguised as a restriction endonuclease? Mol Microbiol 27:671–676

    PubMed  CAS  Google Scholar 

  • Casadesu’s J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70:830–856

    Google Scholar 

  • Chen L, Paulsen DB, Scruggs DW, Banes MM, Reeks BY, Lawrence ML (2003) Alteration of DNA adenine methylase (Dam) activity in Pasteurella multocida causes increased spontaneous mutation frequency and attenuation in mice. Microbiology 149:2283–2290

    PubMed  CAS  Google Scholar 

  • Cheng X (1995) Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct 24:293–318

    PubMed  CAS  Google Scholar 

  • De Bolle X, Bayliss CD, Field D, van de Ven T, Saunders NJ, Hood DW, Moxon ER (2000) The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 35:211–222

    PubMed  Google Scholar 

  • de Vries N, Duinsbergen D, Kuipers EJ, Pot RG, Wiesenekker P, Penn CW, van Vliet AH, Vandenbroucke-Grauls CM, Kusters JG (2002) Transcriptional phase variation of a type III restriction-modification system in Helicobacter pylori. J Bacteriol 184:6615–6623

    PubMed  Google Scholar 

  • Dodson KW, Berg DE (1989) Factors affecting transposition activity of IS50 and Tn5 ends. Gene 76:207–213

    PubMed  CAS  Google Scholar 

  • Donahue JP, Israel DA, Torres VJ, Necheva AS, Miller GG (2002) Inactivation of a Helicobacter pylori DNA methyltransferase alters dnaK operon expression following host-cell adherence. FEMS Microbiol Lett 208:295–301

    PubMed  CAS  Google Scholar 

  • Dybvig K, Sitaraman R, French CT (1998) A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements. Proc Natl Acad Sci USA 95:13923–13928

    PubMed  CAS  Google Scholar 

  • Fa¨lker S, Schmidt MA, Heusipp G (2005) DNA methylation in Yersinia enterocolitica: role of the DNA adenine methyltransferase in mismatch repair and regulation of virulence factors. Microbiology 151:2291–2299

    Google Scholar 

  • Fälker S, Schmidt MA, Heusipp G (2007) DNA adenine methylation and bacterial pathogenesis. Int J Med Microbiol 297:1–7

    PubMed  Google Scholar 

  • Fox KL, Srikhanta YN, Jennings MP (2007) Phase variable Type III restriction-modification systems of host-adapted bacterial pathogens. Mol Microbiol 65:1375–1379

    PubMed  CAS  Google Scholar 

  • Garcia-Del Portillo F, Pucciarelli MG, Casadesus J (1999) DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc Natl Acad Sci USA 96:11578–11583

    PubMed  CAS  Google Scholar 

  • Geier GE, Modrich P (1979) Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. J Biol Chem 254:1408–1413

    PubMed  CAS  Google Scholar 

  • Haagmans W, van der Woude M (2000) Phase variation of Ag43 in Escherichia coli: dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol Microbiol 35:877–887

    PubMed  CAS  Google Scholar 

  • Hallet B (2001) Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr Opin Microbiol 4:570–581

    PubMed  CAS  Google Scholar 

  • Hattman S, Malygin EG (2004) Bacteriophage T2Dam and T4Dam DNA-[N6-adenine]-methyltransferases. Prog Nucleic Acid Res Mol Biol 77:67–126

    PubMed  CAS  Google Scholar 

  • Hattman S, Sun W (1997) Escherichia coli OxyR modulation of bacteriophage Mu mom expression in dam+ cells can be attributed to its ability to bind Pmom promoter DNA. Nucleic Acids Res 25:4385–4388

    PubMed  CAS  Google Scholar 

  • Heithoff D, Sinsheimer RL, Low DA, Mahan MJ (1999) An essential role for DNA adenine methylation in bacterial virulence. Science 284:967–970

    PubMed  CAS  Google Scholar 

  • Heithoff DM, Enioutina EI, Daynes RA, Sinsheimer RL, Low DA, Mahan MJ (2001) Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect Immun 69:6725–6730

    PubMed  CAS  Google Scholar 

  • Heitman J (1993) On the origins, structures and functions of restriction-modification enzymes. Genet Eng (NY) 15:57–108

    CAS  Google Scholar 

  • Herman GE, Modrich P (1982) Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme. J Biol Chem 257:2605–2612

    PubMed  CAS  Google Scholar 

  • Heusipp G, Falker S, Schmidt MA (2006) DNA adenine methylation and bacterial pathogenesis. Int J Med Microbiol 29:1–7

    Google Scholar 

  • Jafri S, Chen S, Calvo JM (2002) ilvIH operon expression in Escherichia coli requires Lrp binding to two distinct regions of DNA. J Bacteriol 184:5293–5300

    PubMed  CAS  Google Scholar 

  • Jeltsch A (1999) Circular permutation in the molecular evolution of DNA methyltransferases. J Mol Evol 49:161–164

    PubMed  CAS  Google Scholar 

  • Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3:274–293

    PubMed  CAS  Google Scholar 

  • Jeltsch A (2003) Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene 317:13–16

    PubMed  CAS  Google Scholar 

  • Jennings MP, Hood DW, Peak IR, Virji M, Moxon ER (1995) Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol Microbiol 18:729–740

    PubMed  CAS  Google Scholar 

  • Jorgensen HF, Bird A (2002) MeCP2 and other methyl-CpG binding proteins. Ment Retard Dev Disabil Res Rev 8:87–93

    PubMed  Google Scholar 

  • Julio SM, Heithoff DM, Provenzano D, Klose KE, Sinsheimer RL, Low DA, Mahan MJ (2001) DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect Immun 69:7610–7615

    PubMed  CAS  Google Scholar 

  • Julio SM, Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ (2002) DNA adenine methylase overproduction in Yersinia pseudotuberculosis alters YopE expression and secretion and host immune responses to infection. Infect Immun 70:1006–1009

    PubMed  CAS  Google Scholar 

  • Kim JS, Li J, Barnes IH et al (2008) Role of the Campylobacter jejuni Cj1461 DNA methyltransferase in regulating virulence characteristics. J Bacteriol 190:6524–6529

    PubMed  CAS  Google Scholar 

  • Kita K, Kotani H, Sugisaki H, Takanami M (1989) The FokI restriction-modification system I. Organization and nucleotide sequences of the restriction and modification genes. J Biol Chem 264:5751–5756

    PubMed  CAS  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    PubMed  CAS  Google Scholar 

  • Kobayashi I (2004) Restriction-modification systems as minimal forms of life. In: Pingoud A (ed) Restriction endonucleases. Springer, Berlin, pp 19–62

    Google Scholar 

  • Kossykh VG, Schlagman SL, Hattman S (1995) Phage T4 DNA [N6-adenine]methyltransferase. Overexpression, purification, and characterization. J Biol Chem 270:14389–14393

    PubMed  CAS  Google Scholar 

  • Kumar R, Rao DN (2011) A nucleotide insertion between two solitary MTases results in a bifunctional fusion MTase in H.pylori. Biochem J 433:487–495

    PubMed  CAS  Google Scholar 

  • Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22:1–10

    PubMed  CAS  Google Scholar 

  • Kumar R, Mukhopadhyay AK, Rao DN (2010) Characterization of an N6 adenine methyltransferase from H. pylori strain 26695 which methylates adjacent adenines on the same strand. FEBS J 277:1666–1683

    PubMed  CAS  Google Scholar 

  • Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914

    PubMed  CAS  Google Scholar 

  • Lin LF, Posfai J, Roberts RJ, Kong H (2001) Comparative genomics of the restriction-modification systems in Helicobacter pylori. Proc Natl Acad Sci USA 98:2740–2745

    PubMed  CAS  Google Scholar 

  • Løbner-Olesen A, Marinus MG, Hansen FG (2003) Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci USA 100:4672–4677

    PubMed  Google Scholar 

  • Lobner-Olesen A, Skovgaard O, Marinus MG (2005) Dam methylation:coordinating cellular processes. Curr Opin Microbiol 8:154–160

    PubMed  CAS  Google Scholar 

  • López-Garrido J, Casadesús J (2010) Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation. Genetics 184:637–649

    PubMed  Google Scholar 

  • Low DA, Weyand NJ, Mahan MJ (2001) Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun 69:7197–7204

    PubMed  CAS  Google Scholar 

  • Lu M, Campbell JL, Boye E, Kleckner N (1994) SeqA: a negative modulator of replication initiation in E. coli. Cell 77:413–426

    PubMed  CAS  Google Scholar 

  • Lupas AN, Pointing CP, Russell RB (2001) On the evolution of protein folds: are similar motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world? J Struct Biol 134:191–203

    PubMed  CAS  Google Scholar 

  • Luria SE, Human ML (1952) A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 64:557–569

    PubMed  CAS  Google Scholar 

  • Malone T, Blumenthal RM, Cheng X (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 253:618–632

    PubMed  CAS  Google Scholar 

  • Marczynski GT, Shapiro L (2002) Control of chromosome replication in Caulobacter crescentus. Annu Rev Microbiol 56:625–656

    PubMed  CAS  Google Scholar 

  • Marinus MG (1996) Methylation of DNA. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington DC, pp 782–791

    Google Scholar 

  • Marinus MG, Casadesus J (2009) Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 33:488–503

    PubMed  CAS  Google Scholar 

  • Mashhoon N, Carroll M, Pruss C, Eberhard J, Ishikawa S, Estabrook RA, Reich N (2004) Functional characterization of Escherichia coli DNA adenine methyltransferase, a novel target for antibiotics. J Biol Chem 279:52075–52081

    PubMed  CAS  Google Scholar 

  • McClain MS, Shaffer CL, Israel DA, Peek RM Jr, Cover TL (2009) Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer. BMC Genomics 10:3

    PubMed  Google Scholar 

  • McCommas SA, Syvanen M (1988) Temporal control of transposition in Tn5. J Bacteriol 170:889–894

    PubMed  CAS  Google Scholar 

  • McKane M, Milkman R (1995) Transduction, restriction and recombination patterns in Escherichia coli. Genetics 139:35–43

    PubMed  CAS  Google Scholar 

  • Mehling JS, Lavender H, Clegg S (2006) A Dam methylation mutant of Klebsiella pneumoniae, is partially attenuated. FEMS Microbiol Lett 268:187–193

    Google Scholar 

  • Messer W, Noyer-Weidner M (1988) Timing and targeting: the biological functions of Dam methylation in E. coli. Cell 54:735–737

    PubMed  CAS  Google Scholar 

  • Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133

    PubMed  CAS  Google Scholar 

  • Moxon ER, Thaler DS (1997) Microbial genetics. The tinkerer’s evolving tool-box. Nature 387:659–662

    PubMed  CAS  Google Scholar 

  • Moxon R, Bayliss C, Hood D (2006) Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–333

    PubMed  CAS  Google Scholar 

  • Naito T, Kusano K, Kobayashi I (1995) Selfish behavior of restriction-modification systems. Science 267:897–899

    PubMed  CAS  Google Scholar 

  • Nan X, Cross S, Bird A (1998) Gene silencing by methyl-CpGbinding proteins. Novartis Found Symp 214:6–16

    PubMed  CAS  Google Scholar 

  • Ogden GB, Pratt MJ, Schaechter M (1988) The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated. Cell 54:121–135

    Google Scholar 

  • Oshima T, Wada C, Kawagoe Y, Ara T, Maeda M, Masuda Y, Hiraga S, Mori H (2002) Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 45:673–695

    PubMed  CAS  Google Scholar 

  • Oza JP, Yeh JB, Reich NO (2005) DNA methylation modulates Salmonella enterica serovar Typhimurium virulence in Caenorhabditis elegans. FEMS Microbiol Lett 245:53–59

    PubMed  CAS  Google Scholar 

  • Pingoud A, Fuxreiter M, Pingoud V, Wende W (2005) Type II restriction endonucleases: structure and mechanism. Cell Mol Life Sci 62:685–707

    PubMed  CAS  Google Scholar 

  • Polaczek P, Kwan K, Campbell L (1998) GATC motifs may alter the conformation of DNA depending on sequence context and N6-adenine methylation status: possible implications for DNA-protein recognition. Mol Gen Genet 258:488–493

    PubMed  CAS  Google Scholar 

  • Posfai J, Bhagwat AS, Posfai G, Roberts RJ (1989) Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res 17:2421–2435

    PubMed  CAS  Google Scholar 

  • Raleigh EA, Brooks JE (1998) Restriction modification systems: where they are and what they do. In: De Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial genomes. Chapman and Hall, New York, pp 78–92

    Google Scholar 

  • Reisenauer A, Shapiro L (2002) DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J 21:4969–4977

    PubMed  CAS  Google Scholar 

  • Reisenauer A, Kahng LS, McCollum S, Shapiro L (1999) Bacterial DNA methylation: a cell cycle regulator? J Bacteriol 181:5135–5139

    PubMed  CAS  Google Scholar 

  • Reznikoff WS (1993) The Tn5 transposon. Annu Rev Microbiol 47:945–963

    PubMed  CAS  Google Scholar 

  • Roberts D, Hoopes BC, McClure WR, Kleckner N (1985) IS10 transposition is regulated by DNA adenine methylation. Cell 43:117–130

    PubMed  CAS  Google Scholar 

  • Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev S, Dryden DT, Dybvig K et al (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812

    PubMed  CAS  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2007) REBASE–enzymes and genes for DNA restriction and modification. Nucleic Acids Res 35:D269–D270

    PubMed  CAS  Google Scholar 

  • Robertson BD, Meyer TF (1992) Genetic variation in pathogenic bacteria. Trends Genet 8:422–427

    PubMed  CAS  Google Scholar 

  • Robertson GT, Reisenauer A, Wright R, Jensen RB, Jensen A, Shapiro L, Roop RM II (2000) The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J Bacteriol 182:3482–3489

    PubMed  CAS  Google Scholar 

  • Robinson VL, Oyston PC, Titball RW (2005) Oral immunization with a dam mutant of Yersinia pseudotuberrculosis protects against plague. Microbiology 151:1919–1926

    Google Scholar 

  • Ryan KA, Lo RY (1999) Characterization of a CACAG pentanucleotide repeat in Pasteurella haemolytica and its possible role in modulation of a novel type III restriction-modification system. Nucleic Acids Res 27:1505–1511

    PubMed  CAS  Google Scholar 

  • Salaun L, Bodo L, Suerbaum S, Saunders NJ (2004) The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori. Microbiology 150:817–830

    PubMed  Google Scholar 

  • Salaun L, Ayraud S, Saunders NJ (2005) Phase variation mediated niche adaptation during prolonged experimental murine infection with Helicobacter pylori. Microbiology 151:917–923

    PubMed  Google Scholar 

  • Saunders NJ, Peden JF, Hood DW, Moxon ER (1998) Simple sequence repeats in the Helicobacter pylori genome. Mol Microbiol 27:1091–1098

    PubMed  CAS  Google Scholar 

  • Saunders NJ, Jeffries AC, Peden JF, Hood DW, Tettelin H, Rappuoli R, Moxon ER (2000) Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol 37:207–215

    PubMed  CAS  Google Scholar 

  • Schlagman SL, Hattman S (1983) Molecular cloning of a functional dam+ gene coding for phage T4 DNA adenine methylase. Gene 22:139–156

    PubMed  CAS  Google Scholar 

  • Schlagman SL, Miner Z, Feher Z, Hattman S (1988) The DNA [adenine-N6]methyltransferase (Dam) of bacteriophage T4. Gene 73:517–530

    PubMed  CAS  Google Scholar 

  • Schluckebier G, O’Gara M, Saenger W, Cheng X (1995) Universal catalytic domain structure of AdoMet-dependent methyltransferases. J Mol Biol 247:16–20

    PubMed  CAS  Google Scholar 

  • Seib KL, Peak IR, Jennings MP (2002) Phase variable restriction-modification systems in Moraxella catarrhalis. FEMS Immunol Med Microbiol 32:159–165

    PubMed  CAS  Google Scholar 

  • Sistla S, Rao DN (2004) S-Adenosyl-L-methionine-dependent restriction enzymes. Crit Rev Biochem Mol Biol 39:1–19

    PubMed  CAS  Google Scholar 

  • Sohail A, Lieb M, Dar M, Bhagwat AS (1990) A gene required for very short patch repair in E. coli is adjacent to the DNA cytosine methylase gene. J Bacteriol 172:4214–4221

    PubMed  CAS  Google Scholar 

  • Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP (2005) The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci USA 102:5547–5551

    PubMed  CAS  Google Scholar 

  • Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu H-J, Harrison OB, Fox KL, Seib KL, Maguire TL, Wang AH-J, Maiden MC, Grimmond SM, Apicella MA, Jennings MP (2009) Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 5:e1000400

    PubMed  Google Scholar 

  • Srikhanta YN, Fox KL, Jennings MP (2010) The phasevarion: phase variation of Type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol 8:196–206

    PubMed  CAS  Google Scholar 

  • Sternberg N, Sauer B, Hoess R, Abremski K (1986) Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by Dam methylation. J Mol Biol 187:197–212

    PubMed  CAS  Google Scholar 

  • Sugisaki H, Kita K, Takanami M (1989) The FokI restriction-modification system II. Presence of two domains in FokI methylase responsible for modification of different strands. J Biol Chem 264:5757–5761

    PubMed  CAS  Google Scholar 

  • Sun K, Jiao XD, Zhang M, Sun L (2010) DNA adenine methylase is involved in the pathogenesis of Edwardsiella tarda. Vet Microbiol 141:149–154

    PubMed  CAS  Google Scholar 

  • Taylor VL, Titball RW, Oyston PCF (2005) Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology 151:1919–1926

    PubMed  CAS  Google Scholar 

  • Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    PubMed  CAS  Google Scholar 

  • Torreblanca J, Marqués S, Casadesús J (1999) Synthesis of FinP RNA by plasmids F and pSLT is regulated by DNA adenine methylation. Genetics 152:31–45

    PubMed  CAS  Google Scholar 

  • Urig S, Gowher H, Hermann A, Beck C, Fatemi M, Humeny A, Jeltsch A (2002) The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J Mol Biol 319:1085–1096

    PubMed  CAS  Google Scholar 

  • van der Ende A, Hopman CT, Zaat S, Essink BB, Berkhout B, Dankert J (1995) Variable expression of class 1 outer membrane protein in Neisseria meningitides is caused by variation in the spacing between the −10 and −35 regions of the promoter. J Bacteriol 177:2475–2480

    PubMed  Google Scholar 

  • van der Woude MW (2006) Re-examining the role and random nature of phase variation. FEMS Microbiol Lett 254:190–197

    PubMed  Google Scholar 

  • van der Woude MW, Baumler AJ (2004) Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581–611

    PubMed  Google Scholar 

  • Van Etten JL (2003) Unusual life style of giant chlorella viruses. Annu Rev Genet 37:153–195

    PubMed  Google Scholar 

  • van Ham SM, van Alphen L, Mooi FR, van Putten JP (1993) Phase variation of Haemophilus influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. Cell 73:1187–1196

    PubMed  Google Scholar 

  • Vitkute J, Stankevicius K, Tamulaitiene G, Maneliene Z, Timinskas A, Berg DE, Janulaitis A (2001) Specificities of eleven different DNA methyltransferases of Helicobacter pylori strain 26695. J Bacteriol 183:443–450

    PubMed  CAS  Google Scholar 

  • Waldron DE, Owen P, Dorman CJ (2002) Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol Microbiol 44:509–520

    PubMed  CAS  Google Scholar 

  • Watson ME, Jarisch J, Smith AL (2004) Inactivation of deoxyadenosine methyltransferase (dam) attenuates Haemophilus influenzae virulence. Mol Microbiol 55:651–654

    Google Scholar 

  • Weiser JN, Williams A, Moxon ER (1990) Phasevariable lipopolysaccharide structures enhance the invasive capacity of Haemophilus influenzae. Infect Immun 58:3455–3457

    PubMed  CAS  Google Scholar 

  • Wilson GG, Murray NE (1991) Restriction and modification systems. Annu Rev Genet 25:585–627

    PubMed  CAS  Google Scholar 

  • Wion D, Casadesus J (2006) N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol 4:183–192

    PubMed  CAS  Google Scholar 

  • Wright R, Stephens C, Zweiger G, Shapiro L, Alley MR (1996) Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation. Genes Dev 10:1532–1542

    PubMed  CAS  Google Scholar 

  • Xu Q, Stickel S, Roberts RJ, Blaser MJ, Morgan RD (2000) Purification of the novel endonuclease, Hpy188I, and cloning of its restriction-modification genes reveal evidence of its horizontal transfer to the Helicobacter pylori genome. J Biol Chem 275:17086–17093

    PubMed  CAS  Google Scholar 

  • Yamaki H, Ohtsubo E, Nagai K, Maeda Y (1988) The oriC unwinding by dam methylation in Escherichia coli. Nucleic Acids Res 16:5067–5073

    PubMed  CAS  Google Scholar 

  • Yarmolinski MB, Sternberg N (1988) Bacteriophage P1. In: Calendar R (ed) The bacteriophages, vol 1. Plenum Press, New York, pp 782–791

    Google Scholar 

  • Zweiger G, Marczynski G, Shapiro L (1994) A Caulobacter DNA methyltransferase that functions only in the predivisional cell. J Mol Biol 235:472–485

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desirazu N. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, R., Rao, D.N. (2013). Role of DNA Methyltransferases in Epigenetic Regulation in Bacteria. In: Kundu, T. (eds) Epigenetics: Development and Disease. Subcellular Biochemistry, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4525-4_4

Download citation

Publish with us

Policies and ethics