Skip to main content

Secondary Structures of the Core Histone N-terminal Tails: Their Role in Regulating Chromatin Structure

  • Chapter
  • First Online:
Epigenetics: Development and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 61))

Abstract

The core histone N-terminal tails dissociate from their binding positions in nucleosomes at moderate salt concentrations, and appear unstructured in the crystal. This suggested that the tails contributed minimally to chromatin structure. However, in vitro studies have shown that the tails were involved in a range of intra- and inter-nucleosomal as well as inter-fibre contacts. The H4 tail, which is essential for chromatin compaction, was shown to contact an adjacent nucleosome in the crystal. Acetylation of H4K16 was shown to abolish the ability of a nucleosome array to fold into a 30 nm fibre. The application of secondary structure prediction software has suggested the presence of extended structured regions in the histone tails. Molecular Dynamics studies have further shown that sections of the H3 and H4 tails assumed α-helical and β-strand content that was enhanced by the presence of DNA, and that post-translational modifications of the tails had a major impact on these structures. Circular dichroism and NMR showed that the H3 and H4 tails exhibited significant α-helical content, that was increased by acetylation of the tail. There is thus strong evidence, both from biophysical and from computational approaches, that the core histones tails, particularly that of H3 and H4, are structured, and that these structures are influenced by post-translational modifications. This chapter reviews studies on the position, binding sites and secondary structures of the core histone tails, and discusses the possible role of the histone tail structures in the regulation of chromatin organization, and its impact on human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615

    Article  PubMed  CAS  Google Scholar 

  • Allahverdi A, Yang R, Korolev N, Fan Y, Davey CA, Liu CF, Nordenskiöld L (2011) The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res 39:1680–1691

    Article  PubMed  CAS  Google Scholar 

  • Allfrey VG, Faulkner RR, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  PubMed  CAS  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119

    Article  PubMed  CAS  Google Scholar 

  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 88:10148–10152

    Article  PubMed  CAS  Google Scholar 

  • Arya G, Schlick T (2006) Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc Natl Acad Sci U S A 103:16236–16241

    Article  PubMed  CAS  Google Scholar 

  • Banères JL, Martin A, Parello J (1997) The N tails of histones H3 and H4 adopt a highly structured conformation in the nucleosome. J Mol Biol 273:503–508

    Article  PubMed  Google Scholar 

  • Bang E, Lee CH, Yoon JB, Lee DW, Lee W (2001) Solution structures of the N-terminal domain of histone H4. J Pept Res 58:389–398

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  PubMed  CAS  Google Scholar 

  • Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Joukov V, Walter JC, Luger K, Kaye KM (2006) The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 311:856–861

    Article  PubMed  CAS  Google Scholar 

  • Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD (2002) Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418:498

    Article  PubMed  CAS  Google Scholar 

  • Caterino TL, Hayes JJ (2011) Structure of the H1 C-terminal domain and function in chromatin condensation. Biochem Cell Biol 89:35–44

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2001) A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152:375–384

    Article  PubMed  CAS  Google Scholar 

  • Chodaparambil JV, Barbera AJ, Lu X, Kaye KM, Hansen JC, Luger K (2007) A charged and contoured surface on the nucleosome regulates chromatin compaction. Nat Struct Mol Biol 14:1105–1107

    Article  PubMed  CAS  Google Scholar 

  • Daban JR, Bermudez A (1998) Interdigitated solenoid model for compact chromatin fibers. Biochemistry 37:4299–4304

    Article  PubMed  CAS  Google Scholar 

  • Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807

    Article  PubMed  CAS  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113

    Article  PubMed  CAS  Google Scholar 

  • Dion MF, Altschuler SJ, Wu LF, Rando OJ (2005) Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci U S A 102:5501–5506

    Article  PubMed  CAS  Google Scholar 

  • Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327:85–96

    Article  PubMed  CAS  Google Scholar 

  • Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571–1573

    Article  PubMed  CAS  Google Scholar 

  • Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M, Shilatifard A (2002) Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277:28368–28371

    Article  PubMed  CAS  Google Scholar 

  • Ducker CE, Simpson RT (2000) The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome. EMBO J 19:400–409

    Article  PubMed  CAS  Google Scholar 

  • Ebralidse KK, Grachev SA, Mirzabekov AD (1988) A highly basic histone H4 domain bound to the sharply bent region of nucleosomal DNA. Nature 331:365–367

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DG, Smith MM, Roth SY (1996) Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev 10:1247–1259

    Article  PubMed  CAS  Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A 73:1897–1901

    Article  PubMed  CAS  Google Scholar 

  • Forneris F, Binda C, Vanoni MA, Battaglioli E, Mattevi A (2005) Human histone demethylase LSD1 reads the histone code. J Biol Chem 280:41360–41365

    Article  PubMed  CAS  Google Scholar 

  • Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M (1999) Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274:25543–25549

    Article  PubMed  CAS  Google Scholar 

  • Grauffel C, Stote RH, Dejaegere A (2010) Force field parameters for the simulation of modified histone tails. J Comput Chem 31:2434–2451

    PubMed  CAS  Google Scholar 

  • Harborne N, Allan J (1983) Modulation of the relative trypsin sensitivities of the core histone ‘tails’. FEBS Lett 155:88–92

    Article  PubMed  CAS  Google Scholar 

  • Herrera JE, Schiltz RL, Bustin M (2000) The accessibility of histone H3 tails in chromatin modulates their acetylation by P300/CBP-associated factor. J Biol Chem 275:12994–12999

    Article  PubMed  CAS  Google Scholar 

  • Jackson V (1999) Formaldehyde cross-linking for studying nucleosomal dynamics. Methods 17:125–139

    Article  PubMed  CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  • Kan PY, Lu X, Hansen JC, Hayes JJ (2007) The H3 tail domain participates in multiple interactions during folding and self-association of nucleosome arrays. Mol Cell Biol 27:2084–2091

    Article  PubMed  CAS  Google Scholar 

  • Kan PY, Caterino TL, Hayes JJ (2009) The H4 tail domain participates in intra- and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays. Mol Cell Biol 29:538–546

    Article  PubMed  CAS  Google Scholar 

  • Korolev N, Lyubartsev AP, Nordenskiöld L (2006) Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Biophys J 90:4305–4316

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Kundu TT (2007) Small molecular modulators in epigenetics: implications in gene expression and therapeutics. In: Kundu TT, Dasgupta D (eds) Chromatin and disease. Springer, New York

    Chapter  Google Scholar 

  • Kurdistani SK (2011) Histone modifications in cancer biology and prognosis. Prog Drug Res 67:91–106

    PubMed  CAS  Google Scholar 

  • LaPenna G, Furlan S, Perico A (2006) Modeling H3 histone N-terminal tail and linker DNA interactions. Biopolymers 83:135–147

    Article  CAS  Google Scholar 

  • Lee KM, Hayes JJ (1997) The N-terminal tail of histone H2A binds to two distinct sites within the nucleosome core. Proc Natl Acad Sci U S A 94:8959–8964

    Article  PubMed  CAS  Google Scholar 

  • Lins RD, Röthlisberger U (2006) Influence of long-range electrostatic treatments on the folding of the N-terminal H4 histone tail peptide. J Chem Theory Comput 2:246–250

    Article  CAS  Google Scholar 

  • Liu H, Duan Y (2008) Effects of post-translational modifications on the structure and dynamics of histone H3 N-terminal peptide. Biophys J 94:4579–4585

    Article  PubMed  CAS  Google Scholar 

  • Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3:e328

    Article  PubMed  Google Scholar 

  • Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T (2011) Epigenetics in alternative pre-mRNA splicing. Cell 144(1):16–26

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  PubMed  CAS  Google Scholar 

  • Moore SC, Ausio J (1997) Major role of the histones H3-H4 in the folding of the chromatin fiber. Biochem Biophys Res Commun 230:136–139

    Article  PubMed  CAS  Google Scholar 

  • Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    Article  PubMed  CAS  Google Scholar 

  • Nunes AM, Zavitsanos K, Del CR, Malandrinos G, Hadjiliadis N (2009) Interaction of histone H2B (fragment 63–93) with Ni(ii). An NMR study. Dalton Trans 11:1904–1913

    Article  PubMed  Google Scholar 

  • Phillips DMP (1961) Acetyl groups as N-terminal substituents in calf-thymus histones. Biochem J 80:40P

    Google Scholar 

  • Phillips DMP (1963) The presence of acetyl groups in histones. Biochem J 87:258–263

    PubMed  CAS  Google Scholar 

  • Robinson PJ, Fairall L, Huynh VA, Rhodes D (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci U S A 103:6506–6511

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 381:816–825

    Article  PubMed  CAS  Google Scholar 

  • Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141

    Article  PubMed  CAS  Google Scholar 

  • Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y (1999) Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274:1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  PubMed  CAS  Google Scholar 

  • Sperling J, Sperling R (1978) Photochemical cross-linking of histones to DNA nucleosomes. Nucleic Acids Res 5:2755–2773

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427

    Article  PubMed  CAS  Google Scholar 

  • Usachenko SI, Bavykin SG, Gavin IM, Bradbury EM (1994) Rearrangement of the histone H2A C-terminal domain in the nucleosome. Proc Natl Acad Sci U S A 91:6845–6849

    Article  PubMed  CAS  Google Scholar 

  • Van Holde KD (1989) Chromatin. Academic, New York

    Book  Google Scholar 

  • Walker IO (1984) Differential dissociation of histone tails from core chromatin. Biochemistry 23:5622–5628

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Moore SC, Laszckzak M, Ausio J (2000) Acetylation increases the alpha-helical content of the histone tails of the nucleosome. J Biol Chem 275:35013–35020

    Article  PubMed  CAS  Google Scholar 

  • Wang X, He C, Moore SC, Ausio J (2001) Effects of histone acetylation on the solubility and folding of the chromatin fiber. J Biol Chem 276:12764–12768

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Maekawa M (2010) Methylation of DNA in cancer. Adv Clin Chem 52:145–167

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci U S A 95:7480–7484

    Article  PubMed  CAS  Google Scholar 

  • Williams SP, Athey BD, Muglia LJ, Schappe RS, Gough AH, Langmore JP (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J 49:233–248

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11:130–135

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL, Frado LL, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99:42–52

    Article  PubMed  CAS  Google Scholar 

  • Worcel A, Strogatz S, Riley D (1981) Structure of chromatin and the linking number of DNA. Proc Natl Acad Sci U S A 78:1461–1465

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Arya G (2011) Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation. Phys Chem Chem Phys 13:2911–2921

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Hayes JJ (2003) Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system. J Biol Chem 278:24217–24224

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Lu X, Hansen JC, Hayes JJ (2005) Salt-dependent intra- and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array. J Biol Chem 280:33552–33557

    Article  PubMed  CAS  Google Scholar 

  • Zheng S, Wyrick JJ, Reese JC (2010) Novel trans-tail regulation of H2B ubiquitylation and H3K4 methylation by the N terminus of histone H2A. Mol Cell Biol 30:3635–3645

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Fan JY, Rangasamy D, Tremethick DJ (2007) The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol 14:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Zoroddu MA, Kowalik-Jankowska T, Kozlowski H, Molinari H, Salnikow K, Broday L, Costa M (2000) Interaction of Ni(II) and Cu(II) with a metal binding sequence of histone H4: AKRHRK, a model of the H4 tail. Biochim Biophys Acta 1475:163–168

    Article  PubMed  CAS  Google Scholar 

  • Zoroddu MA, Medici S, Peana M (2009) Copper and nickel binding in multi-histidinic peptide fragments. J Inorg Biochem 103:1214–1220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh-G. Patterton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

du Preez, L.L., Patterton, HG. (2013). Secondary Structures of the Core Histone N-terminal Tails: Their Role in Regulating Chromatin Structure. In: Kundu, T. (eds) Epigenetics: Development and Disease. Subcellular Biochemistry, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4525-4_2

Download citation

Publish with us

Policies and ethics