Skip to main content

The Effects of Climate-Change-Induced Drought and Freshwater Wetlands

  • Chapter
  • First Online:
Global Change and the Function and Distribution of Wetlands

Part of the book series: Global Change Ecology and Wetlands ((GCEW,volume 1))

Abstract

Drought cycles in wetlands may become more frequent and severe in the future, with consequences for wetland distribution and function. According to the Intergovernmental Panel on Climate Change (Intergovernmental Panel on Climate Change [IPCC], Managing the risks of extreme events and disasters to advance climate change adaptation, 2012. Online: http://ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf, climate-change is likely to affect precipitation and evapotranspiration patterns so that the world’s wetlands may have more frequent episodes of extreme flooding and drought. This chapter contributes to a worldwide view of how wetland processes may be affected by these predicted changes in climate. Specifically, the occurrence of drought may increase, and that increase may affect the critical processes that sustain biodiversity in wetlands. We include specific examples that explore the effects of drought and other climate-change factors on wetland function in various parts of the world. In a concluding section we discuss management strategies for climate-change in wetlands. The synthesis of information in this chapter will contribute to a better understanding of how climate-change-induced drought may affect the function and distribution of wetlands in the future.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteer DM, Pielke RA Jr, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010

    Article  PubMed  CAS  Google Scholar 

  • Alm J, Schulman L, Walden J, Nykänen H, Martikainen PJ, Silvola J (1999) Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–174

    Article  Google Scholar 

  • Bleuten W, Borren W, Glaser PH, Tsuchihara T, Lapshina ED, Mäkilä M, Siegel DH, Joosten H, Wassen MJ (2006) Hydrological processes, nutrient flows and patterns of fens and bogs. In: Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (eds.) Wetlands and Natural Resource Management, Springer, Dortrecht, pp. 183–204.

    Article  Google Scholar 

  • Bolli JC, Rigling A, Bugmann H (2007) The influence of changes in climate and land-use on regeneration dynamics of Norway spruce at the treeline in the Swiss Alps. Silva Fennnica 41:55–70

    Google Scholar 

  • Bond NR, Lake PS, Arthington AH (2008) The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600:3–16

    Article  Google Scholar 

  • Boudell JA, Stromberg JC (2008) Propagule banks: potential contribution to restoration of an impounded and dewatered riparian ecosystem. Wetlands 28:656–665

    Article  Google Scholar 

  • Boulton AJ (2003) Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw Biol 48:1173–1185

    Article  Google Scholar 

  • Breeuwer A, Heijmans M, Robroek BJM, Berendse F (2010) Field simulation of global change: transplanting northern bog mesocosms southward. Ecosystems 13:712–726

    Article  CAS  Google Scholar 

  • Brinson MM, Lugo AE, Brown AE (1981) Primary productivity, decomposition, and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161

    Article  Google Scholar 

  • Britton DL, Brock MA (1994) Seasonal germination from wetland seed banks. Aust J Mar Freshw Res 45:1445–1459

    Article  Google Scholar 

  • Brock MA (1991) Mechanisms for maintaining persistent populations of Myriophyllum variifolium in a fluctuating shallow Australian lake. Aquat Bot 39:211–219

    Article  Google Scholar 

  • Brock MA, Casanova MT (1997) Plant life at the edge of wetlands; ecological responses to wetting and drying patterns. In: McComb AJ, Davis JA (eds) Wetlands for the future. Proceedings of INTECOL’s V international wetlands conference. Gleneagles Press, Adelaide, 1998

    Google Scholar 

  • Brock MA, Rogers KH (1998) The regeneration potential of the seed bank of an ephemeral floodplain in South Africa. Aquat Bot 61:123–135

    Article  Google Scholar 

  • Brock MA, Nielsen DN, Shiel RJ, Green JD, Langley JD (2003) Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshw Biol 48:1207–1218

    Article  Google Scholar 

  • Brown SC, Bedford BL (1997) Restoration of wetland vegetation with transplanted wetland soil: an experimental study. Wetlands 17:424–437

    Article  Google Scholar 

  • Burke IC, Kittel TGF, Laurenroth WK, Snook P, Yonker CM, Parton WJ (1991) Regional analysis of the central Great Plains. Bioscience 41:685–692

    Article  Google Scholar 

  • Carpenter SR, Fisher SG, Grimm NB, Kitchell JF (1992) Global change and freshwater ecosystems. Annu Rev Ecol Syst 23:119–139

    Article  Google Scholar 

  • Casanova MT, Brock MA (1990) Charophyte germination and establishment from the seed bank of an Australian temporary lake. Aquat Bot 36:247–254

    Article  Google Scholar 

  • Clawson RG, Lockaby BG, Rummer B (2001) Changes in production and nutrient cycling across a wetness gradient within a floodplain forest. Ecosystems 4:126–138

    Article  Google Scholar 

  • CONAMA (2006) Estudio de la variabilidad climática en Chile para el siglo XXI. Informe Final. Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile

    Google Scholar 

  • Crumpacker DW, Box EO, Hardin ED (2001) Temperate subtropical transition areas for native woody plant species in Florida, USA: present locations, predicted changes under climatic warming, and implications for conservation. Nat Areas J 21:136–148

    Google Scholar 

  • Dale VH (1997) The relationship between land-use change and climate change. Ecol Appl 7:753–769

    Article  Google Scholar 

  • Davis CB, van der Valk AG (1988) Ecology of a semitropical wetland in India (Bharatpur). Final Project Report, School of Natural Resources, Ohio State University, Columbus, OH, USA, p 104

    Google Scholar 

  • Deacon JE (1961) Fish populations, following a drought, in the Neosho and Marais des Cygnes Rivers in Kansas, vol 13, Museum of Natural History. University of Kansas Publications, Lawrence, pp 359–427

    Google Scholar 

  • Diochon A, Rigg LS, Goldblum D, Polans N (2003) Regeneration dynamics and genetic variability of sugar maple (Acer saccharum [Marsh.]) seedlings at the species’ northern growth limit, Lake Superior Provincial Park, Canada. Phys Geogr 24:399–413

    Article  Google Scholar 

  • Douglas MM, Townsend SA, Lake PS (2003a) Stream dynamics. In: Andersen A, GD Cook GD, Williams RJ (eds) Fire in tropical savannas: an Australian study. Springer, New York, pp 59–78

    Chapter  Google Scholar 

  • Douglas MR, Brunner PC, Douglas ME (2003b) Drought in an evolutionary context: molecular variability in flannelmouth sucker (Catosomus latipinnis) from the Colorado River Basin of western North America. Freshw Biol 48:1256–1275

    Google Scholar 

  • Dykes AP, Warburton J (2008) Characteristics of the Shetland Islands (UK) peat slides of 19 September 2003. Landslides 5:213–226

    Article  Google Scholar 

  • Etterson JR (2004) Evolutionary potential of Chamaecrista fasciculata in relation to climate change: I. Clinal patterns of selection along an environmental gradient in the Great Plains. Evolution 58:1446–1458

    PubMed  Google Scholar 

  • Everard M (1996) The importance of periodic droughts for maintaining diversity in the freshwater environment. Freshw Forum 7:33–50

    Google Scholar 

  • Finlayson CM (1991) Plant ecology and management of an internationally important wetland in monsoonal Australia. In: Kusler J, Daly S (eds) Proceedings of an international symposium on wetlands and river corridor management. Association of State Wetland Managers, New York, pp 98–99

    Google Scholar 

  • Finlayson CM (2005) Plant ecology of Australia’s tropical floodplain wetlands: a review. Ann Bot 96:541–555

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Lock MA, Reynolds B (1993) Climatic change and the release of immobilized nutrients from Welsh riparian soils. Ecol Eng 2:367–373

    Article  Google Scholar 

  • Frelich LE, Reich PB (2009) Will environmental changes reinforce the impact of global warming on the prairie-forest border of central North America. Front Ecol Environ 8:3721–3781

    Google Scholar 

  • Fritz SC, Ito E, Yu Z, Laird KR, Engstrom DR (2000) Hydrologic variation in the northern Great Plains during the last two millennia. Quat Res 53:175–184

    Article  CAS  Google Scholar 

  • Galatowitsch SM, van der Valk AG (1996) The vegetation of restored and natural prairie wetlands. Ecol Appl 6:102–112

    Article  Google Scholar 

  • Galatowitsch S, Frelich L, Phillips-Mao L (2009) Regional climate change adaptation strategies for biodiversity conservation in a midcontinental region of North America. Biol Conserv 142:2012–2022

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclim Palaeoecol 281:180–195

    Article  Google Scholar 

  • Gerdol R, Bragazza L, Brancaleoni L (2008) Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and CO2 exchange in an alpine bog. New Phytol 179:142–154

    Article  PubMed  CAS  Google Scholar 

  • Ghosn D, Vogitzakis IN, Kzakis G, Dimitriou E, Moussoulis E, Maliaka V, Zacharias I (2010) Ecological changes in the highest temporary pond of western Crete (Greece): past, present and future. Hydrobiologia 648:3–18

    Article  Google Scholar 

  • Goswami BN, Venugopal P, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445

    Article  PubMed  CAS  Google Scholar 

  • Groisman PYA, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Furtuniak K, Razuvaev VN, Douglas A, Førland E, Zhai P-M (1999) Changes in the probability of heavy precipitation: important indicators of climatic change. Clim Change 2:242–283

    Google Scholar 

  • Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M, Richey JE, Romero-Lankao P, Schulze D, Chen CTA (2004) The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate, and the natural world. Island Press, Washington DC, pp 45–76

    Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy on Sphagnum dominated mire ecosystems: a 40 year study. Ecography 25:685–704

    Article  Google Scholar 

  • Halpin PN (1997) Global climate change and nature-area protection: management responses and research directions. Ecol Appl 7:828–843

    Article  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hannah L, Midgley GF, Millar D (2002) Climate change-integrated conservation strategies. Glob Ecol Biogeogr 11:485–495

    Article  Google Scholar 

  • Harcombe PA, Hall RBW, Glitzenstein JS, Cook ES, Krusic P, Fulton M, Streng DR (1999) Sensitivity of Gulf Coast forests to climate change. In: Gunterspergen G, Varain BA (eds) Vulnerability of coastal wetlands in the Southeastern United States: climate change research results. Biological Science Report USGS/BRD/BSR-1998-0002, pp 45–66

    Google Scholar 

  • Heijmans MMPD, Mauquoy D, van Geel B, Berendse F (2008) Long-term effects of climate change on vegetation and carbon dynamics in peat bogs. J Veg Sci 19:307–320

    Article  Google Scholar 

  • Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158:129–140

    Article  PubMed  Google Scholar 

  • Heschel MS, Donohue K, Hausmann N, Schmitt J (2002) Population differentiation and natural selection for water-use efficiency in Impatiens capensis (Balsaminaceae). Int J Plant Sci 163:907–912

    Article  Google Scholar 

  • Hogenbirk JC, Wein RW (1992) Temperature effects on seedling emergence from boreal wetland soils: implication for climate change. Aquat Bot 42:361–373

    Article  Google Scholar 

  • Hogg EH, Lieffers VJ, Wein RW (1992) Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire. Ecol Appl 2:298–306

    Article  Google Scholar 

  • Hughes L (2003) Climate change and Australia: trends, projections and impacts. Aust Ecol 28:423–443

    Article  Google Scholar 

  • Humphries P, Baldwin DS (2003) Drought and aquatic ecosystems: an introduction. Freshw Biol 48:1141–1146

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. Online: http://ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf

  • Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol Monogr 698:465–485

    Article  Google Scholar 

  • Iverson LR, Prasad AM (2002) Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. For Ecol Manage 155:205–222

    Article  Google Scholar 

  • Iverson LR, Prasad AN, Matthews SM, Peters MP (2009) Potential changes in tree habitat under Illinois climate change. Chapter 16. In: Taft JB (ed) Canaries in the catbird seat, vol 30, Special Publication. Illinois Natural History Survey, Champaign, pp 263–270

    Google Scholar 

  • Izaurralde RC, Thomson AM, Rosenberg JJ, Brown RA (2005) Climate change impacts for the conterminous USA: an integrated assessment – Part 6. Distribution and productivity of unmanaged ecosystems. Clim Change 69:107–126

    Article  CAS  Google Scholar 

  • Jenkins KM, Boulton AJ (2007) Detecting impacts and setting restoration targets in arid-zone rivers: aquatic micro-invertebrate responses to reduced floodplain inundation. J Appl Ecol 44:823–832

    Article  Google Scholar 

  • Johnson WC, Boettcher SE, Poiani KA, Guntenspergen G (2004) Influence of weather extremes on the water levels of glaciated prairie wetlands. Wetlands 24:385–398

    Article  Google Scholar 

  • Keddy PA, Reznicek AA (1986) Great Lakes vegetation dynamics: the role of fluctuating levels and buried seeds. J Great Lakes Res 12:25–36

    Article  Google Scholar 

  • Keller JK, White JR, Bridgham SD, Pastor J (2004) Climate change effects on carbon and nitrogen mineralization in peatlands through changes in soil quality. Glob Change Biol 10:1053–1064

    Article  Google Scholar 

  • Kiviniemi K, Ericksson O (1999) Dispersal, recruitment and site occupancy of grassland plant in fragmented habitats. Oikos 86:241–253

    Article  Google Scholar 

  • Kleinebecker T, Hölzel N, Vogel A (2007) Gradients of continentality and moisture in South Patagonian ombrotrophic peatland vegetation. Folia Geobot 42:363–382

    Article  Google Scholar 

  • Kleinebecker T, Hölzel N, Vogel A (2008) South Patagonian ombrotrophic bog vegetation reflects biogeochemical gradients at the landscape level. J Veg Sci 19:151–160

    Article  Google Scholar 

  • Kleinebecker T, Hölzel N, Vogel A (2010) Patterns and gradients of diversity in South Patagonian ombrotrophic peat bogs. Aust Ecol 35:1–12

    Article  Google Scholar 

  • Koch J, Kilian R (2002) Dendroecological potential of common tree species along a transect across the southernmost Andes, Chile (53°S). Anales del Instituto de la Patagonia 30:123–132

    Google Scholar 

  • Ladle M, Bass JAB (1981) The ecology of a small chalk stream and its responses to drying during drought conditions. Arch Hydrobiol 90:448–466

    CAS  Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172

    Article  Google Scholar 

  • Lake PS (2008) Drought the “creeping disaster”: effects on aquatic ecosystems. Land and Water Australia, Canberra, Australia.http://lwa.gov.au/files/products/innovation/pn20677/pn20677.pdf

  • Larimore RW, Childers WF, Heckrotte C (1959) Destruction and re-establishment of stream fish and invertebrates affected by drought. Trans Am Fish Soc 88:261–285

    Article  Google Scholar 

  • Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413

    Article  PubMed  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Lite SJ, Stromberg JC (2005) Surface water and groundwater thresholds for maintaining PopulusSalix forests, San Pedro River, Arizona. Biol Conserv 125:153–167

    Article  Google Scholar 

  • Mani NJ, Suhas E, Goswami BN (2009) Can global warming make Indian monsoon weather less predictable? Geophys Res Lett 36:1–5

    Article  Google Scholar 

  • Marshall JD, Blair JM, Peters DPPPC, Okin G, Rango A, Williams M (2008) Predicting and understanding ecosystem response to climate change at continental scales. Front Ecol Environ 6:273–280

    Article  Google Scholar 

  • Matthews WJ, Marsh-Matthews E (2003) Effects of drought on fish across axes of space, time and ecological complexity. Freshw Biol 48:1232–1253

    Article  Google Scholar 

  • McLachlan JS, Hellman JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302

    Article  PubMed  Google Scholar 

  • McLeod E, Salm RV (2006) Managing mangrove for resilience to climate change. IUCN Resilience Science Group working paper series number 2. IUCN/Nature Conservancy, Gland, Switzerland

    Google Scholar 

  • Michener WK, Blood ER, Bildstein KL, Brinson MM, Gardner LR (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol Appl 7:770–801

    Article  Google Scholar 

  • Middleton BA (1999a) Wetland restoration, flood pulsing and disturbance dynamics. Wiley, New York

    Google Scholar 

  • Middleton B (1999b) Succession and herbivory in monsoonal wetlands. Wetlands Ecol Manage 6:189–202

    Article  Google Scholar 

  • Middleton B (2000) Hydrochory, seed banks, and regeneration dynamics along the landscape boundaries of a forested wetland. Plant Ecol 146:169–184

    Article  Google Scholar 

  • Middleton BA (2003) Soil seed banks and the potential restoration of forested wetlands after farming. J Appl Ecol 40:1025–1034

    Article  Google Scholar 

  • Middleton BA (2009a) Regeneration potential of Taxodium distichum swamps and climate change. Plant Ecol 202:257–274

    Article  Google Scholar 

  • Middleton BA (2009b) Vegetation status of the Keoladeo National Park, Bharatpur, Rajasthan, India (April 2009). Scientific investigations report 2009-5193, p 8

    Google Scholar 

  • Middleton BA, McKee KL (2004) Use of a latitudinal gradient in bald cypress (Taxodium distichum) production to examine physiological controls of biotic boundaries and potential responses to environmental change. Glob Ecol Biogeogr 13:247–258

    Article  Google Scholar 

  • Middleton BA, McKee KL (2005) Primary production in an impounded baldcypress swamp (Taxodium distichum) at the northern limit of the range. Wetlands Ecol Manage 13:15–24

    Article  Google Scholar 

  • Middleton BA, McKee K (2011) Soil warming alters seed bank responses across the geographic range of freshwater Taxodium distichum (Cupressaceae) swamps. Am J Bot 98:1943–1955

    Article  PubMed  Google Scholar 

  • Middleton B, Wu XB (2008) Landscape pattern of seed banks and anthropogenic impacts in forested wetlands of the northern Mississippi River Alluvial Valley. Ecoscience 15:231–240

    Article  Google Scholar 

  • Middleton BA, van der Valk AG, Williams RL, Mason DJ, Davis DB (1991) Vegetation dynamics and seed banks of a monsoonal wetland overgrown with Paspalum distichum in northern India. Aquat Bot 40:239–259

    Article  Google Scholar 

  • Middleton BA, van der Valk AG, Davis CB, Mason DH, Williams RL (1992) Litter decomposition in an Indian monsoonal wetland overgrown with Paspalum distichum. Wetlands 12:37–44

    Article  Google Scholar 

  • Mitchell DS, Rogers KH (1985) Seasonality/aseasonality of aquatic macrophytes in Southern Hemisphere waters. Hydrobiologia 125:137–150

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York

    Google Scholar 

  • National Centre for Medium Range Weather Forecasting (NCMRWF) (2009) NCMRWF Web site: Noida, UP, India, National Centre for Medium Range Forecasting, Ministry of Earth Sciences. http:///www.ncmrwf.gov.in. Accessed 20 Mar 2009

    Google Scholar 

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

    Article  Google Scholar 

  • Ouchley K, Hamilton RB, Barrow WC Jr, Ouchley K (2000) Historic and present-day forest conditions: implication for bottomland hardwood forest restoration. Ecol Restor 18:21–25

    Google Scholar 

  • Overpeck T, Rind D, Goldberg R (1990) Climate-induced changes in forest disturbance and vegetation. Nature 343:51–53

    Article  Google Scholar 

  • Overpeck JT, Webb RS, Webb T III (1994) Mapping eastern North American vegetation change of the past 18,000 years: no-analogs and the future. Geology 20:1071–1074

    Article  Google Scholar 

  • Payette S, Fillion L, Delwaide A, Begin C (1989) Reconstruction of tree-line vegetation response to long-term climate change. Nature 341:429–432

    Article  Google Scholar 

  • Peters RL, Darling JD (1985) The greenhouse effect and nature reserves. Bioscience 35:707–717

    Article  Google Scholar 

  • Pigott CD, Huntley JP (1978) Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. 1. Distribution in north-west England. New Phytol 81:429–441

    Article  Google Scholar 

  • Pisano E (1977) Fitogeografía de Fuego-Patagonia Chilena – Comunidades vegetales entre las latitudes 52 y 56°S. Anales del Instituto de la Patagonia 8:121–250

    Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–411

    Article  Google Scholar 

  • Poff NL (2002) Ecological response to and management of increased flooding caused by climate change. Philos Trans R Soc 36:1497–1510

    Google Scholar 

  • Poff NL, Hart DD (2002) How dams vary and why it matters for the emerging science of dam removal. Bioscience 52:659–723

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. Bioscience 47:769–784

    Article  Google Scholar 

  • Poiani KA, Johnson WC (1985) The effects of hydroperiod on seed bank composition in semi-permanent prairie wetlands. Can J Bot 67:856–864

    Article  Google Scholar 

  • Prasad SN, Ramachandra TV, Ahalya N, Sengupta T, Kuma A, Tiwari AK, Vijayan VS, Vijayan L (2002) Conservation of wetlands of India – a review. Trop Ecol 43:173–186

    Google Scholar 

  • Prasad AM, Iverson LR, Matthews S, Peters M (2008) Climate change tree atlas (a spatial database of 134 tree species of the eastern USA). www.nrs.fs.fed.us/atlas/tree/tree_atlas.html. Online: 3 Aug 2010

  • Puckridge JT, Sheldon F, Walker KF, Boulton AJ (1998) Flow variability and the ecology of large rivers. Mar Freshw Biol 49:55–72

    Article  Google Scholar 

  • Reid H (2006) Climate change and biodiversity in Europe. Conserv Soc 4:84–101

    Google Scholar 

  • Richards K, Brasington J, Hughes F (2002) Geomorphic dynamics of floodplains: ecological implications and a potential modeling strategy. Freshw Biol 47:559–579

    Article  Google Scholar 

  • Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for assessing hydrologic alteration within ecosystems. Conserv Biol 10:1163–1174

    Article  Google Scholar 

  • Richter BD, Baumgartner JV, Wigington R, Braun DP (1997) How much water does a river need? Freshw Biol 37:231–249

    Article  Google Scholar 

  • Rignot R, Rivera A, Casassa G (2003) Contribution of the Patagonia icefields of South America to sea level rise. Science 302:434–437

    Article  CAS  Google Scholar 

  • Rydin H, Jeglum J, Hooijer A (2006) The biology of peatlands. Oxford University Press, New York

    Book  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schmidt JC, Parnell RA, Grams PE, Hazel JE, Kaplinski MA, Stevens LE, Hoffnagle TL (2001) The 1996 controlled flood in the Grand Canyon: flow, sediment transport, and geomorphic change. Ecol Appl 1:657–671

    Article  Google Scholar 

  • Schmidt SR, Kleinebecker T, Vogel A, Hölzel N (2010) Interspecific and geographical differences of plant tissue nutrient concentrations along an environmental gradient in Southern Patagonia, Chile. Aquat Bot 92:149–156

    Article  CAS  Google Scholar 

  • Schneider R (1994) The role of hydrologic regime in maintaining rare plant communities of New York’s coastal plan pondshores. Biol Conserv 68:253–260

    Article  Google Scholar 

  • Schneider C, Gies D (2004) Effects of El Niño–Southern Oscillation on southernmost South America precipitation at 53°S revealed from NCEP–NCAR reanalyses and weather station data. Int J Climatol 24:1057–1076

    Article  Google Scholar 

  • Schneider SH, Editor in Chief (1996) Encyclopaedia of climate and weather, Oxford University, New York

    Google Scholar 

  • Schneider RL, Sharitz RR (1988) Hydrochory and regeneration in a bald cypress-water tupelo swamp forest. Ecology 69:1055–1063

    Article  Google Scholar 

  • Schneider C, Glaser M, Kilian R, Santana A, Butorovic N, Casassa G (2003) Weather observations across the southern Andes at 53°S. Phys Geogr 24:97–119

    Article  Google Scholar 

  • Scott JL, Friedman JM, Auble GT (1996) Fluvial processes and the establishment of bottomland trees. Geomorphology 14:327–339

    Article  Google Scholar 

  • Shankman D (1991) Forest regeneration on abandoned meanders of a coastal plain river in western Tennessee. Castanea 56:157–167

    Google Scholar 

  • Smith JB, Schellnhuber H-J, Mirza MMQ (2001) Vulnerability to climate change and reasons for concern: a synthesis. In: McCarthy JJ, White KS, Canziani O, Learly N, Dokken DJ (eds) Climate change 2001: impacts: adaptation and vulnerability. Cambridge University Press, Cambridge, pp 913–970

    Google Scholar 

  • Smol JP, Douglas MSV (2007) Crossing the final ecological threshold in high Arctic ponds. PNAS 104:12395–12397

    Article  PubMed  CAS  Google Scholar 

  • Sottocornola M, Laine A, Kiely G, Byrne KA, Tuittila E-A (2009) Vegetation and environmental variation in an Atlantic blanket bog in south-western Ireland. Plant Ecol 203:69–81

    Article  Google Scholar 

  • Stanley EH, Fisher SG, Jones JB (2004) Effects of water loss on primary production: a landscape-scale model. Aquat Sci 66:130–138

    Article  Google Scholar 

  • Stevens LE, Ayers TJ, Bennett JB, Christensen K, Kearsley MJC, Meretsky VJ, Phillips AM III, Parnell A, Spence J, Sogge MK, Springer AE, Wegner DL (2001) Planned flooding and Colorado River riparian trade-offs downstream from Glen Canyon Dam, Arizona. Ecol Appl 11:701–710

    Article  Google Scholar 

  • Streng DR, Glitzenstein JS, Harcombe PA (1989) Woody seedling dynamics in an east Texas floodplain forest. Ecol Monogr 59:177–204

    Article  Google Scholar 

  • Stromberg JC, Beauchamp VB, Dixon MD, Lite SJ, Paradzick C, Thompson K (2007) Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid south-western United States. Freshw Biol 52:651–679

    Article  Google Scholar 

  • Thompson K (1992) The functional ecology of seed banks. In: Fenner M (ed) The ecology of regeneration in plant communities. CAB International, Wallingford, UK, pp 231–258

    Google Scholar 

  • Touchette BW, Steudler SE (2007) Climate change, drought, and wetland vegetation. In: Uzochukwu GA, Schimmel K, Chang S-Y, Kabadi V, Luster-Teasley S, Reddy G, Nzewi E (eds) Proceedings of the 2007 national conference on environmental science and technology. Springer, New York, pp 239–244

    Google Scholar 

  • Tuhkanen S (1992) The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Bot Fennica 145:1–64

    Google Scholar 

  • van der Valk AG (1981) Succession in wetlands: a Gleasonian approach. Ecology 62:688–696

    Article  Google Scholar 

  • van der Valk AG (2005) Water-level fluctuations in North American prairie wetlands. Hydrobiologia 539:171–188

    Article  Google Scholar 

  • van der Valk AG, Davis CB (1978) The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59:322–335

    Article  Google Scholar 

  • van der Valk AG, Welling CH (1988) The development of zonation in freshwater wetlands. In: During HJ, Werger MJA, Willems JH (eds) Diversity and pattern in plant communities. SPB Academic Publishing, The Hague, pp 145–158

    Google Scholar 

  • van der Valk AG, Rhymer J, Murkin HR (1991) Flooding and the decomposition of litter of four emergent plant species in a prairie wetland. Wetlands 11:1–16

    Article  Google Scholar 

  • van der Valk AG, Middleton BA, Williams RL, Mason DH, Davis C (1993) The biomass of an Indian monsoonal wetland before and after being overgrown with Paspalum distichum. Vegetation 109:81–90

    Article  Google Scholar 

  • Waggoner PE (ed) (1990) Climate change and U.S. water resources. Wiley, New York

    Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  PubMed  CAS  Google Scholar 

  • Welcomme RL (1979) Fisheries and ecology of floodplain rivers. Longman, London

    Google Scholar 

  • Welcomme RL (1986) The effects of the Sahelian drought in the fishery of the central delta of the Niger River. Aquac Fish Manage 17:147–154

    Google Scholar 

  • Weltzin JF, Harth C, Bridgham SD, Pastor J, Vonderharr M (2001) Production and microtopography of bog bryophytes: response to warming and water-table manipulations. Oecologia 128:557–565

    Article  Google Scholar 

  • Westwood CG, Teeuw TM, Wade PM, Holmes NTH (2006) Prediction of macrophyte communities in drought-affected groundwater-fed headwater streams. Hydrol Process 20:127–145

    Article  Google Scholar 

  • Whetton P (1997) Floods, droughts and the Southern oscillation. In: Webb EK (ed) Windows on meteorology: Australian perspective. CSIRO Publishing, Melbourne, pp 180–199

    Google Scholar 

  • Wienhold CE, van der Valk AG (1989) The impact of duration of drainage on the seed banks of northern prairie wetlands. Can J Bot 67:1878–1884

    Article  Google Scholar 

  • Woodhouse CA, Overpeck JT (1998) 2000 years of drought variability in the central United States. Bull Am Meteorol Soc 79:2693–2714

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A. Middleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Middleton, B.A., Kleinebecker, T. (2012). The Effects of Climate-Change-Induced Drought and Freshwater Wetlands. In: Middleton, B. (eds) Global Change and the Function and Distribution of Wetlands. Global Change Ecology and Wetlands, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4494-3_4

Download citation

Publish with us

Policies and ethics