Skip to main content

Chromium and Nickel

  • Chapter
  • First Online:
Heavy Metals in Soils

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

Nickel (Ni) and chromium (Cr) are elements naturally present in all rock types and present in the pedosphere in a range from trace amounts to relatively high concentrations, as compared to other trace elements. Particularly high Ni and Cr concentrations are found in serpentine rocks and soils, originating from this rock type and colonized by a specialized flora that may present some curious species capable of hyperaccumulating extraordinary high concentrations of Ni in their above-ground parts. In recent decades, the large release of Cr and Ni by industrial activities, mainly the manufacture of stainless steel, as well as the use of sewage sludge as soil amendment in agricultural soils, have caused an impressive increase in the levels of these two metals in the pedosphere and other environmental matrices. This has led to increasing environmental concern as, while relatively low concentrations of Ni and Cr are essential for plants and other living organisms including humans, both the elements are toxic for all living organisms if present in excessive concentrations. This chapter reviews the distribution and the geochemical behaviour of Ni and Cr, their main dynamics in the soil environment, with regards to the natural and anthropogenic sources. The relationships of Ni and Cr with the plants, in particular with some Ni hyperaccumulator species are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamo, P., Zampella, M., Gianfreda, L., Renella, G., Rutigliano, F. A., & Terribile, F. (2006). Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part I. Trace element speciation in relation to soil properties. Environmental Pollution, 144, 308–316.

    CAS  Google Scholar 

  2. Adriano, D. C. (1986). Trace elements in the environment. New York: Springer.

    Google Scholar 

  3. Adriano, D. C. (2001). Trace elements in terrestrial environments (2nd ed.). New York: Springer.

    Google Scholar 

  4. Agency for Toxic Substances and Disease Registry – ATSDR. (2005). Toxicological Profile for Nickel. U.S. Dept. of Health and Human Services Public Health Service. Toxicological profile for nickel, Atlanta, Georgia (USA), pp. 397.

    Google Scholar 

  5. Anderson, R. A. (1989). Essentiality of Cr in humans. Science of the Total Environment, 86, 75–81.

    CAS  Google Scholar 

  6. Anderson, R. A. (1997). Chromium as an essential nutrient for humans. Regulatory Toxicology and Pharmacology, 26, S35–S41.

    CAS  Google Scholar 

  7. Baker, A. J. M. (1981). Accumulators and excluders – Strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    CAS  Google Scholar 

  8. Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In N. Terry & G. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 85–107). Boca Raton: Lewis Publishers.

    Google Scholar 

  9. Bañobre-López, M., Vázquez-Vázquez, C., Rivas, J., & López-Quinte, M. A. (2003). Magnetic properties of chromium (III) oxide nanoparticles. Nanotechnology, 14, 318–323.

    Google Scholar 

  10. Barrie, L. A., Lindberg, S. E., Chan, W. H., Ross, H. B., Arimoto, R., & Church, T. M. (1987). On the concentration of trace metals in precipitation. Atmospheric Environment, 21, 1133–1135.

    CAS  Google Scholar 

  11. Bartlett, R. J., & James, B. R. (1979). Behavior of chromium in soils: Oxidation. Journal of Environmental Quality, 8, 31–35.

    CAS  Google Scholar 

  12. Bartlett, R. J., & Kimble, J. M. (1976). Behaviour of chromium in soils: I. Trivalent form. Journal of Environmental Quality, 5, 379–382.

    CAS  Google Scholar 

  13. Bequer, T., Quantin, C., Sicot, M., & Boudot, J. P. (2003). Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment, 301, 251–261.

    Google Scholar 

  14. Bes, C., & Mench, M. (2009). Assessment of ecotoxicity of topsoils from a wood treatment site. Pedosphere, 19, 143–155.

    Google Scholar 

  15. Best, M. G. (2003). Igneous and metamorphic petrology (2nd ed.). Oxford: Blackwell Publishing.

    Google Scholar 

  16. Boyd, R. S. (2007). The defense hypothesis of elemental hyperaccumulation: Status, challenges and new directions. Plant and Soil, 293, 153–176.

    CAS  Google Scholar 

  17. Brady, K. U., Kruckeberg, A. R., & Bradshaw, H. D. (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics, 36, 243–266.

    Google Scholar 

  18. Brooks, R. R. (1987). Serpentine and its vegetation. A multidisciplinary approach. Portland: Dioscoride Press.

    Google Scholar 

  19. Brooks, R. R. (1998). Plants that hyperaccumulate heavy metals. Wallingford: CAB International.

    Google Scholar 

  20. Brooks, R. R., Lee, J., Reeves, R. D., & Jaffré, T. (1977). Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration, 7, 49–57.

    CAS  Google Scholar 

  21. Brown, P. H., Welch, R. M., Cary, E. E., & Checkai, R. T. (1987). Beneficial effects of nickel on plant growth. Journal of Plant Nutrition, 10, 2125–2135.

    CAS  Google Scholar 

  22. Buerge, I. J., & Hug, S. J. (1999). Influence of mineral surfaces on chromium(VI) reduction by iron(II). Environmental Science and Technology, 33, 4285–4291.

    CAS  Google Scholar 

  23. Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71.

    Google Scholar 

  24. Cesalpino, A. (1583). De plantis libri XVI. Florentiae : apud Georgium Marescottum.

    Google Scholar 

  25. Chandra, P., Sinha, S., & Rai, U. N. (1997). Bioremediation of Cr from water and soil by vascular aquatic plants. In E. L. Kruger, T. A. Anderson, & J. R. Coats (Eds.), Phytoremediation of soil and water contaminants (ACS symposium series, Vol. 664, pp. 274–282). Washington, DC: American Chemical Society.

    Google Scholar 

  26. Chaney, R., Malik, M., Li, Y., Brown, S., Brewer, E., Angle, J., & Baker, A. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–284.

    CAS  Google Scholar 

  27. Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429–1443.

    CAS  Google Scholar 

  28. Chen, C., Huang, D., & Liu, J. (2009). Functions and toxicity of nickel in plants: Recent advances and future prospects. Clean, 37(4–5), 304–313.

    CAS  Google Scholar 

  29. Cheshire, M. V., Berrow, M. L., Goodman, B. A., & Mundie, C. M. (1977). Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochimica et Cosmochimica Acta, 41, 1131–1138.

    CAS  Google Scholar 

  30. Chiarucci, A. (2003). Vegetation ecology and conservation on Tuscan ultramafic soils. The Botanical Review, 69(3), 252–268.

    Google Scholar 

  31. Chiarucci, A., Robinson, B. H., Bonini, I., Petit, D., Brooks, R. R., & De Dominicis, V. (1998). Vegetation of tuscan ultramafic soils in relation to edaphic and physical factors. Folia Geobotanica, 33, 113–131.

    Google Scholar 

  32. Clemens, S., Palmgren, M. G., & Krämer, U. (2002). A long way ahead: Understanding and engineering plant metal accumulation. Trends in Plant Science, 7, 309–315.

    CAS  Google Scholar 

  33. Coleman, R. N. (1988). Chromium toxicity: Effects on microorganisms with special reference to the soil matrix. In J. O. Nriagu & E. Nieboer (Eds.), Chromium in natural and human environments (pp. 335–350). New York: Wiley Interscience.

    Google Scholar 

  34. Costa, M. (1997). Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Critical Reviews in Toxicology, 27(5), 431–442.

    CAS  Google Scholar 

  35. da Silva, J. J. R. F., & Williams, R. J. P. (1991). The biological chemistry of the elements: The inorganic chemistry of life. Oxford: Oxford University Press.

    Google Scholar 

  36. Deltombe, E., Zoubov, N., & Pourbaix, M. (1966). Chromium. In M. Pourbaix (Ed.), Atlas of electrochemical equilibria in aqueous solutions (pp. 256–271). Oxford: Pergamon Press.

    Google Scholar 

  37. Dickinson, N., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics: Realism and synergies. International Journal of Phytoremediation, 11, 97–114.

    CAS  Google Scholar 

  38. Eary, L. E., & Rai, D. (1989). Kinetics of chromate reduction by ferrous ions derived by hematite and biotite at 25 °C. American Journal of Science, 289, 180–216.

    CAS  Google Scholar 

  39. Ellis, A. S., Johnson, T., & Bullen, T. D. (2002). Chromium isotopes and the fate of hexavalent chromium in the environment. Science, 295, 2060–2062.

    CAS  Google Scholar 

  40. Ellis, A. S., Johnson, T. M., & Bullen, T. D. (2004). Using chromium stable isotope ratios to quantify Cr(VI) reduction: Lack of sorption effects. Environmental Science and Technology, 38, 3604–3607.

    CAS  Google Scholar 

  41. Emsley, J. (2001). Chromium. Nature’s building blocks: An A-Z guide to the elements. Oxford: Oxford University Press.

    Google Scholar 

  42. Eskew, D. L., Welch, R. M., & Carey, E. E. (1983). Nickel: An essential micronutrient for legumes and possibly all higher plants. Science, 222, 621–623.

    CAS  Google Scholar 

  43. Eskew, D. L., Welch, R. M., & Norvall, W. A. (1984). Nickel in higher plants. Further evidence for an essential role. Plant Physiology, 76, 691–693.

    CAS  Google Scholar 

  44. Fantoni, D., Brozzo, G., Canepa, M., Cipolli, F., Marini, L., Ottonello, G., & Zuccolini, M. V. (2002). Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environmental Geology, 42, 871–882.

    CAS  Google Scholar 

  45. Fischer, L., Brummer, G. W., & Barrow, N. J. (2007). Observations and modelling of the reactions of 10 metals with goethite: Adsorption and diffusion processes. European Journal of Soil Science, 58, 1304–1315.

    CAS  Google Scholar 

  46. Gäbler, H. E., Bahr, A., Heidkamp, A., & Utermann, J. (2007). Enriched stable isotopes for determining the isotopically exchangeable element content in soils. European Journal of Soil Science, 58, 746–757.

    Google Scholar 

  47. Galardi, F., Mengoni, A., Pucci, S., Barletti, L., Massi, L., Barzanti, R., Gabbrielli, R., & Gonnelli, C. (2007). Intra-specific differences in mineral element composition in the Ni-hyperaccumulator Alyssum bertolonii: A survey of populations in nature. Environmental and Experimental Botany, 60, 50–56.

    CAS  Google Scholar 

  48. Gandois, L., Probst, A., & Dumat, C. (2010). Modelling trace metal extractability and solubility in French forest soils by using soil properties. European Journal of Soil Science, 61, 271–286.

    CAS  Google Scholar 

  49. Han, F. X., Banin, A., Su, Y., Monts, D. L., Plodinec, M. J., Kingery, W. L., & Triplett, G. L. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89, 497–504.

    CAS  Google Scholar 

  50. Hara, T., & Sonoda, Y. (1979). Comparison of the toxicity of heavy metals to cabbage growth. Plant and Soil, 51, 127–133.

    CAS  Google Scholar 

  51. Hooda, P. S., Zhang, H., Davison, W., & Edwards, C. E. (1999). Measuring bioavailable trace metals by diffusive gradients in thin films (DGT): Soil moisture effects on its performance in soils. European Journal of Soil Science, 50, 285–294.

    CAS  Google Scholar 

  52. Hunter, J. G., & Vergnano, O. (1953). Trace-element toxicities in oat plants. In R. W. Marsh & I. Thomas (Eds.), Annals of Applied Biology (pp. 761–776). Cambridge, UK: University Press.

    Google Scholar 

  53. James, B. R. (1996). The challenge of remediating chromium-contaminated soil. Environmental Science and Technology, 30, 248–251.

    Google Scholar 

  54. James, B. R., & Bartlett, R. J. (1988). Mobility and bioavailability of chromium in soil. In J. O. Nriagu & E. Nieboer (Eds.), Chromium in natural and human environments (pp. 265–305). New York: Wiley Interscience.

    Google Scholar 

  55. Johnson, W. R., & Proctor, J. (1981). Growth of serpentine and nonserpentine races of Festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil. Journal of Ecology, 69, 855–869.

    Google Scholar 

  56. Jones, D. L. (1997). Trivalent metal (Cr, Y, Rh, La, Pr, Gd) sorption in two acid soils and its consequences for bioremediation. European Journal of Soil Science, 48, 697–702.

    CAS  Google Scholar 

  57. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  58. Kasprzak, K. S., & Salnikow, K. (2007). Nickel toxicity and carcinogenesis. In A. Siegel, H. Siegel, & R. K. O. Siegel (Eds.), Metal ions in life science (Vol. 2, pp. 619–660). Chichester: Wiley.

    Google Scholar 

  59. Katz, S. A., & Salem, H. (1994). The biological and environmental chemistry of chromium. New York: VCH Publishers.

    Google Scholar 

  60. Kazakou, E., Adamidis, G. C., Baker, A. J. M., Reeves, R. D., Godino, M., & Dimitrakopoulos, P. G. (2010). Species adaptation in serpentine soils in Lesbos Island (Greece): Metal hyperaccumulation and tolerance. Plant and Soil, 332, 369–385.

    CAS  Google Scholar 

  61. Kotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107(3), 263–283.

    Google Scholar 

  62. Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534.

    Google Scholar 

  63. Kruckeberg, A. R. (2002). Geology and plant life: The effects of landforms and rock type on plants. Seattle: University of Washington Press.

    Google Scholar 

  64. Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., & Maurice, C. (2006). Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution, 144, 62–69.

    CAS  Google Scholar 

  65. Küpper, H., & Kroneck, P. M. H. (2007). Nickel in the environment and its role in the metabolism of plants and cyanobacteria. In A. Siegel, H. Siegel, & R. K. O. Siegel (Eds.), Metal ions in life science (Vol. 2, pp. 31–62). Chichester: Wiley.

    Google Scholar 

  66. Lan, Y., Deng, B., Kim, C., & Thornton, E. C. (2007). Influence of soil minerals on chromium(VI) reduction by sulphide under anoxic conditions. Geochemical Transactions, 8, 4.

    Google Scholar 

  67. Marschner, H. (1995). Mineral nutrition of higher plants. London: Academic.

    Google Scholar 

  68. Massoura, S. T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclere-Cessac, E., & Morel, J. L. (2006). Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma, 136, 28–37.

    CAS  Google Scholar 

  69. McGrath, S. P., & Loveland, P. J. (1992). The soil geochemical atlas of England and Wales. Glasgow: Blackie Academic & Professional.

    Google Scholar 

  70. Mengoni, A., Schat, H., & Vangronsveld, J. (2010). Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant and Soil, 331, 5–16.

    CAS  Google Scholar 

  71. Mergeay, M. (2000). Bacteria adapted to industrial biotopes: Metal-resistant Ralstonia. In G. Storz & R. Hengge-Aronis (Eds.), Bacterial stress responses (pp. 403–414). Washington, DC: American Society for Microbiology.

    Google Scholar 

  72. Minguzzi, C., & Vergnano, O. (1948). Il contenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Della Societa Toscana di Scienze Naturali, 55, 49–74.

    CAS  Google Scholar 

  73. Mishra, S., Singh, V., Srivastava, S., Srivastava, R., Srivastava, M., Dass, S., Satsang, G., & Prakash, S. (1995). Studies on uptake of trivalent and hexavalent Cr by maize (Zea mays). Food and Chemical Toxicology, 33(5), 393–397.

    CAS  Google Scholar 

  74. Molas, J. (2002). Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(II) complexes. Environmental and Experimental Botany, 47, 115–126.

    CAS  Google Scholar 

  75. Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press.

    Google Scholar 

  76. Mora, M. L., & Barrow, N. J. (1996). The effects of time of incubation on the relation between charge and pH of soil. European Journal of Soil Science, 47, 131–136.

    Google Scholar 

  77. Muyssen, B. T. A., Brix, K. V., DeForest, D. K., & Janssen, C. R. (2004). Nickel essentiality and homeostasis in aquatic organisms. Environmental Reviews, 12, 113–131.

    CAS  Google Scholar 

  78. Nieboer, E., & Jusys, A. A. (1988). Biologic chemistry of chromium. In J. O. Nriagu & E. Nieboer (Eds.), Chromium in natural and human environments (pp. 21–81). New York: Wiley-Interscience.

    Google Scholar 

  79. Nieboer, E., & Shaw, S. L. (1988). Mutagenic and other genotoxic effects of chromium compounds. In J. O. Nriagu & E. Nieboer (Eds.), Chromium in natural and human environments (pp. 399–442). New York: Wiley-Interscience.

    Google Scholar 

  80. Nieminen, T. M. (2004). Effects of copper and nickel on survival and growth of Scots pine. Journal of Environmental Monitoring, 6, 888–896.

    CAS  Google Scholar 

  81. Nieminen, T. M., Ukonmaanaho, L., Rausch, N., & Shotyk, W. (2007). Biogeochemistry of nickel and its release into the environment. In A. Siegel, H. Siegel, & R. K. O. Siegel (Eds.), Metal ions in life science (Vol. 2, pp. 1–30). Chichester: Wiley.

    Google Scholar 

  82. Novák, F. A. (1928). Quelques remarques relative au problème de la végétation sur les terrains serpentiniques. Preslia, 6, 42–71.

    Google Scholar 

  83. Nriagu, J. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 339, 47–49.

    Google Scholar 

  84. Nriagu, J. (2003). Heavy metals and the origin of life. Journal de Physique IV, 107, 969–974.

    CAS  Google Scholar 

  85. Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science, 304, 67–101.

    CAS  Google Scholar 

  86. Oze, C., Bird, D. K., & Fendorf, S. (2007). Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences of the United States of America, 104, 6544–6549.

    CAS  Google Scholar 

  87. Oze, C., Skinner, C., Schroth, A. W., & Coleman, R. G. (2008). Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California. Applied Geochemistry, 23, 3391–3403.

    CAS  Google Scholar 

  88. Poschenrieder, C., Vazquez, M. D., Bonet, A., & Barcelo, J. (1991). Chromium-III-iron interaction in iron sufficient and iron deficient bean plants. 2. Ultrastructural aspects. Journal of Plant Nutrition, 14(4), 415–428.

    CAS  Google Scholar 

  89. Pratt, P. F. (1966). Chromium. In H. D. Chapman (Ed.), Diagnostic criteria for plants and soils (pp. 136–141). Riverside: University of California, Riverside.

    Google Scholar 

  90. Rai, D., Sass, B. M., & Moore, D. A. (1987). Chromium(III) hydrolysis constants and solubility of chromium hydroxide. Inorganic Chemistry, 26, 345–349.

    CAS  Google Scholar 

  91. Raskin, I., Kumar, P. B. A. N., Dushenkov, S., & Salt, D. E. (1994). Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5, 285–290.

    CAS  Google Scholar 

  92. Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8(2), 221–226.

    CAS  Google Scholar 

  93. Richard, F., & Bourg, A. C. M. (1991). Aqueous geochemistry of chromium: A review. Water Research, 25, 807–816.

    CAS  Google Scholar 

  94. Ritchie, G. S. P., & Sposito, G. (1995). Speciation in soils. In A. M. Ure & C. M. Davidson (Eds.), Chemical speciation in the environment (pp. 234–275). London: Blackie Academic & Professional.

    Google Scholar 

  95. Robinson, B. H., Brooks, R. R., Kirkman, J. H., Gregg, P. E. H., & Alvarez, H. V. (1997). Edaphic influences on a New Zealand ultramafic (“serpentine”) flora: A statistical approach. Plant and Soil, 188, 11–20.

    CAS  Google Scholar 

  96. Russell, M. (2006). First life. American Scientist, 94, 31–39.

    Google Scholar 

  97. Russell, M. J., & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29, 358–363.

    CAS  Google Scholar 

  98. Saito, M. A., Sigman, D. M., & Morel, F. M. M. (2003). The bioinorganic chemistry of the ancient ocean: The co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean/Proterozoic boundary? Inorganica Chimica Acta, 356, 308–318.

    CAS  Google Scholar 

  99. Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Ensley, B. D., Chet, L., & Raskin, L. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13(2), 468–474.

    CAS  Google Scholar 

  100. Salunkhe, P. B., Dhakephalkar, P. K., & Paknikar, K. M. (1998). Bioremediation of hexavalent Cr in soil microcosms. Biotechnology Letters, 20, 749–751.

    CAS  Google Scholar 

  101. Scheidegger, A. M., Fendorf, M., & Sparks, D. L. (1996). Mechanisms of nickel sorption on pyrophyllite: Macroscopic and microscopic approaches. Soil Science Society of America Journal, 60, 1763–1772.

    CAS  Google Scholar 

  102. Seigneur, C., & Constantinou, E. (1995). Chemical kinetics mechanism for atmospheric chromium. Environmental Science and Technology, 29, 222–231.

    CAS  Google Scholar 

  103. Senesi, G. S., Baldassarre, G., Senesi, N., & Radina, B. (1999). Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere, 39, 343–377.

    CAS  Google Scholar 

  104. Shacklette, H. T., & Boerngen, J. G. (1984). Element concentrations in soils and other surficial materials of the conterminous United States. USGS Professional Paper 1270. US Govt. Printing Office, Washington, USA, pp. 105.

    Google Scholar 

  105. Shah, K., & Nongkynrih, J. (2007). Metal hyperaccumulation and bioremediation. Biologia Plantarum, 51, 618–634.

    CAS  Google Scholar 

  106. Shallari, S., Schwartz, C., Hasko, A., & Morel, J. L. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of the Total Environment, 209, 133–142.

    CAS  Google Scholar 

  107. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753.

    CAS  Google Scholar 

  108. Sikora, E., Johnson, T., & Bullen, T. (2008). Microbial mass-dependent fractionation of chromium isotopes. Geochimica et Cosmochimica Acta, 72, 3631–3641.

    CAS  Google Scholar 

  109. Stevenson, F. J. (1982). Humus chemistry (pp. 26–53). New York: Wiley.

    Google Scholar 

  110. Syracuse Research Corporation. (1993). Toxicological profile for chromium. Prepared for U.S. Dept. Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease. Registry, under Contract No. 205-88-0608.

    Google Scholar 

  111. Tee, Y.-H., Grulke, E., & Bhattacharyya, D. (2005). Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Industrial and Engineering Chemistry Research, 44, 7062–7070.

    CAS  Google Scholar 

  112. Tiller, K. G. (1963). Weathering and soil formation on dolerite in Tasmania, with particular reference to several trace elements. Australian Journal of Soil Research, 1, 74–90.

    Google Scholar 

  113. Uren, N. C. (1992). Forms, reactions, and availability of nickel in soils. Advances in Agronomy, 48, 141–203.

    CAS  Google Scholar 

  114. Utermann, J., Düwel, O., & Nagel, I. (2006). Contents of trace elements and organic matter in European soils. In B. M. Gawlik & G. Bidoglio (Eds.), Background values in European soils and sewage sludges. Results of a JRC-coordinated study on background values (Part II), European Comission DG-JRC., EUR 22265 EN. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  115. Vergnano Gambi, O. (1992). The distribution and ecology of the vegetation of ultramafic soils in Italy. In B. A. Roberts & J. Proctor (Eds.), The ecology of areas with serpentinized rocks-A world view (pp. 217–247). Dordrecht: Kluwer Academic.

    Google Scholar 

  116. Vergnano Gambi, O. (1993). Gli adattamenti delle piante. In Regione Emilia-Romagna (Ed.), Le ofioliti dell’ Appennino Emiliano (pp. 103–128). Bologna: Tipografia Moderna.

    Google Scholar 

  117. Verry, E. S., & Vermette, S. J. (1991). The deposition and fate of trace metals in our environment. Paper presented at National Atmospheric Deposition Program, National Trends Network. Philadelphia: Published by USDA-Forest Service, North Central Forest Experiment Station.

    Google Scholar 

  118. Welch, R. M. (1995). Micronutrient nutrition of plants. Critical Reviews in Plant Sciences, 14, 49–82.

    CAS  Google Scholar 

  119. Zantua, M. I., & Bremner, J. M. (1977). Stability of urease in soils. Soil Biology and Biochemistry, 9, 135–140.

    CAS  Google Scholar 

  120. Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139–156.

    CAS  Google Scholar 

  121. Zhitkovich, A., Voitkun, V., & Costa, M. (1996). Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro: Importance of trivalent chromium and the phosphate group. Biochemistry, 35, 7275–7282.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Gonnelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gonnelli, C., Renella, G. (2013). Chromium and Nickel. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_11

Download citation

Publish with us

Policies and ethics