Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 32))

  • 2149 Accesses

Abstract

Chapter 2 provides details of passive load-pull systems and impedance tuning and synthesis approaches. Primarily two types of passive tuners—the electromechanical tuner (EMT) and the electronic tuner (ETS)—are employed in load-pull systems. This chapter presents a thorough discussion on the theory and concepts of both these tuners and provides in-depth knowledge on these tuners, so that the readers can select the best cost-effective solutions for their fundamental and harmonic load-pull applications. In the second part of this chapter, calibration techniques to remove errors arising from mismatches, dispersions and imperfections in the cables and system components are provided, as well as the required algorithms of calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Cusack, S.M. Perlow, B.S. Perlman, Automatic load contour mapping for microwave power transistors. IEEE Trans. Microw. Theory Tech. 22, 1146–1152 (1974)

    Article  ADS  Google Scholar 

  2. F. Secchi, R. Paglione, B. Perlman, J. Brown, A computer controlled microwave tuner for automated load pull. RCA Rev. 44(4), 566–583 (1983)

    ADS  Google Scholar 

  3. Focus Microwave, Mechanical vibrations of CCMT tuners used in on-wafer load-pull testing, Application Note AN-46, Oct. 2001

    Google Scholar 

  4. J. Sevic, Introduction to tuner-based measurement and characterization, Technical Note, Maury Microwave Corporation, 5C-054

    Google Scholar 

  5. D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005). ISBN 0-471-17096-8

    Google Scholar 

  6. Microlab, Mechanical tuners, Application Note, Oct. 2000

    Google Scholar 

  7. R. Tuijtelaars, Overview of device noise parameter measurement system, in VDE/ITG-23.10.01 (2001), pp. 1–5

    Google Scholar 

  8. Maury Microwave Corporation, Device characterization with harmonic load and source pull, Application Note: 5C-044, Dec. 2000

    Google Scholar 

  9. Focus Microwave, Load pull measurements on transistors with harmonic impedance control, Technical Note, Aug. 1999

    Google Scholar 

  10. B.W. Leake, A programmable load for power and noise characterization, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Dallas, USA (June 1982), pp. 348–350

    Google Scholar 

  11. Maury Microwave Corporation, LP series electronic tuner system, Technical Data, 4T-081, 2002

    Google Scholar 

  12. M.S. Hashmi, F.M. Ghannouchi, P.J. Tasker, K. Rawat, Highly reflective load-pull. IEEE Microw. Mag. 11(4), 96–107 (2011)

    Article  Google Scholar 

  13. Focus Microwave, Computer controlled microwave tuner—CCMT, Product Note 41, Jan. 1998

    Google Scholar 

  14. Maury Microwave Corporation, Slide screw tuners, Technical Data, 2G-035A, Feb. 1998

    Google Scholar 

  15. Focus Microwaves, Algorithms for automatic high precision residual tuning to 50 Ω using programmable tuners, Application Note 45, May 2001

    Google Scholar 

  16. Focus Microwave, Electronic tuners (ETS) and electromechanical tuners (EMT)—a critical comparison, Technical Note, Aug. 1998

    Google Scholar 

  17. Focus Microwave, Comparing harmonic load-pull techniques with regards to power-added efficiency (PAE), Application Note 58, May 2007

    Google Scholar 

  18. Maury Microwave Corporatio, Cascading tuners for high-VSWR and harmonic applications, Application Note 5C-081, Jan. 2009

    Google Scholar 

  19. F. Deshours, E. Bergeault, F. Blache, J.-P. Villotte, B. Villeforceix, Experimental comparison of load-pull measurement systems for nonlinear power transistor characterization. IEEE Trans. Instrum. Meas. 57(11), 1251–1255 (1997)

    Article  Google Scholar 

  20. A. Ferrero, V. Teppati, Experimental comparison of active and passive load-pull measurement technologies, in 30th European Microwave Conference Proceedings, Paris, France (Oct. 2000), pp. 1–4

    Google Scholar 

  21. C. Arnaud, J.L. Carbonero, J.M. Nebus, J.P. Teyssier, Comparison of active and passive load-pull test benches, in 57th ARFTG Conference, vol. 39 (May 2001), pp. 1–4

    Chapter  Google Scholar 

  22. M.S. Hashmi, A.L. Clarke, S.P. Woodington, J. Lees, J. Benedikt, P.J. Tasker, An accurate calibrate-able multiharmonic active load-pull system based on the envelope load-pull concept. IEEE Trans. Microw. Theory Tech. 58(3), 656–664 (2010)

    Article  ADS  Google Scholar 

  23. W.S. El-Deeb, N. Boulejfen, F.M. Ghannouchi, A multiport measurement system for complex distortion measurements of nonlinear microwave systems. IEEE Trans. Instrum. Meas. 59(5), 1406–1413 (2010)

    Article  Google Scholar 

  24. D. Barataud, F. Blache, A. Mallet, P. Bouysse, J.-M. Nebus, J. Villotte, J. Obregon, J. Verspecht, P. Auxemery, Measurement and control of current/voltage waveforms of microwave transistors using a harmonic load-pull system for the optimum design of high efficiency power amplifiers. IEEE Trans. Instrum. Meas. 48(4), 835–842 (1999)

    Article  Google Scholar 

  25. J.E. Mueller, B. Gyselinckx, Comparison of active versus passive on-wafer load-pull characterization of microwave MMwave power devices, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, San Diego, USA (June 1994), pp. 1077–1080

    Google Scholar 

  26. R.S. Tucker, P.D. Bradley, Computer-aided error correction of large-signal load-pull measurements. IEEE Trans. Microw. Theory Tech. 32(3), 296–300 (1984)

    Article  ADS  Google Scholar 

  27. P.D. Bradley, R.S. Tucker, Computer-corrected load-pull characterization of power MESFETs, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Boston, USA (June 1983), pp. 224–226

    Google Scholar 

  28. C. Tsironis, Adaptable pre-matched tuner system and method, US Patent No. 6674293

    Google Scholar 

  29. G.R. Simpson, Impedance tuner systems and probes, US Patent No. 7589601

    Google Scholar 

  30. J. Sirois, B. Noori, Tuning range analysis of load-pull measurement systems and impedance transforming networks, in 69th ARFTG Conference, Honolulu, USA (June 2007), pp. 1–5

    Chapter  Google Scholar 

  31. C. Roff, J. Graham, J. Sirois, B. Noori, A new technique for decreasing the characterization time of passive load-pull tuners to maximize measurement throughput, in 72nd ARFTG Conference, Portland, USA (Dec. 2008), pp. 92–96

    Google Scholar 

  32. P. Hart, J. Wood, B. Noori, P. Aaen, Improving loadpull measurement time by intelligent measurement interpolation and surface modeling techniques, in 67th ARFTG Conference, San Francisco, USA (June 2006), pp. 69–72

    Chapter  Google Scholar 

  33. R.B. Stancliff, D.B. Poulin, Harmonic load-pull, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Florida, USA (Apr. 1979), pp. 185–187

    Google Scholar 

  34. E.W. Strid, Measurement of losses in noise-matching networks. IEEE Trans. Microw. Theory Tech. 29(3), 247–252 (1981)

    Article  ADS  Google Scholar 

  35. G.P. Bava, U. Pisani, V. Pozzolo, Active load technique for load-pull characterization at microwave frequencies. IEE Electron. Lett. 18(4), 178–180 (1982)

    Article  ADS  Google Scholar 

  36. Y. Takayama, A new load pull characterization method for microwave power transistors, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, New Jersey, USA (June 1976), pp. 218–220

    Google Scholar 

  37. R.A. Hackborn, An automatic network analyzer system. Microw. J. May, 45–52 (1968)

    Google Scholar 

  38. W.S. El-Deeb, M.S. Hashmi, S. Bensmida, N. Boulejfen, F.M. Ghannouchi, Thru-less calibration algorithm and measurement system for on-wafer large-signal characterization of microwave devices, IET J. Microw. Antenna Propag. 4(11), 1773–1781 (2010)

    Article  Google Scholar 

  39. E.F. DaSilva, M.K. McPhun, Calibration technique for one-port measurements. Microw. J. June, 97–100 (1978)

    Google Scholar 

  40. J.R. Souza, E.C. Talboys, S-parameter characterization of coaxial to microstrip transition. IEE Proc. 129(Part H), 37–40 (1982)

    Google Scholar 

  41. M.S. Hashmi, A.L. Clarke, J. Lees, M. Helaoui, P.J. Tasker, F.M. Ghannouchi, Agile harmonic envelope load-pull system enabling reliable and rapid device characterization. IOP J. Meas. Sci. Technol. 21(055109), 1–9 (2010)

    Google Scholar 

  42. M.S. Hashmi, A.L. Clarke, S.P. Woodington, J. Lees, J. Benedikt, P.J. Tasker, Electronic multi-harmonic load-pull system for experimentally driven power amplifier design optimization, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Boston, USA, vols. 1–3 (June 2009), pp. 1549–1552

    Google Scholar 

  43. F. Blache, J.-M. Nebus, P. Bouysse, L. Jallet, A novel computerized multiharmonic active load-pull system for the optimization of high-efficiency operating classes in power transistor, in IEEE International Microwave Symposium Digest, Orlando, USA (June 1995), pp. 1037–1040

    Google Scholar 

  44. A. Grebennikov, N.O. Sokal, Switch Mode RF Power Amplifiers (Elsevier, Oxford, 2007)

    Google Scholar 

  45. F.M. Ghannouchi, F. Beauregard, A.B. Kouki, Power added efficiency and gain improvement in MESFETs amplifiers using an active harmonic loading technique. Microw. Opt. Technol. Lett. 7(13), 625–627 (1994)

    Article  ADS  Google Scholar 

  46. R. Hajji, F.M. Ghannouchi, R.G. Bosisio, Large-signal microwave transistor modeling using multiharmonic load-pull measurements. Microw. Opt. Technol. Lett. 5(11), 580–585 (1992)

    Article  ADS  Google Scholar 

  47. F.M. Ghannouchi, R. Larose, R.G. Bosisio, A new multiharmonic loading method for large-signal microwave and millimeter-wave transistor characterization. IEEE Trans. Microw. Theory Tech. 39(6), 986–992 (1991)

    Article  ADS  Google Scholar 

  48. Y.Y. Woo, Y. Yang, B. Kim, Analysis and experiments for high efficiency class-F and inverse class-F power amplifiers. IEEE Trans. Microw. Theory Tech. 54(5), 1969–1974 (2006)

    Article  ADS  Google Scholar 

  49. F.M. Ghannouchi, M.S. Hashmi, S. Bensmida, M. Helaoui, Enhanced loop passive source- and load-pull architecture for high reflection factor synthesis. IEEE Trans. Microw. Theory Tech. 58(11), 2952–2959 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Hashmi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ghannouchi, F.M., Hashmi, M.S. (2013). Passive Load-Pull Systems. In: Load-Pull Techniques with Applications to Power Amplifier Design. Springer Series in Advanced Microelectronics, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4461-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4461-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4460-8

  • Online ISBN: 978-94-007-4461-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics