Skip to main content

Fracture

  • Chapter
  • First Online:
Mechanical Properties of Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 190))

Abstract

Atomic cohesion is the bond between atoms, holding them together to form an aggregate that does not disintegrate under the normal conditions characteristic of that specific material. Hence, a short look at the essentials of cohesion aids in understanding fracture, which occurs when a force of a certain magnitude is applied against the atomic bonding of the atoms to cause the disintegration of a material. Those forces that hold the groups of atoms or molecules of a substance together are called ‘bonds’. The formation of bonds between atoms is mainly due to their tendency to attain minimum potential energy, thus reaching a stable state. In solid material, it is usually assumed that two types of forces act between the atoms: (a) an attractive force, which keeps the atoms together, forcing them to form solids and (b) a repulsive force, which comes into play when a solid is compressed. Figure 7.1a shows the concept of cohesion, based on the relation below, graphically:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T.L. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, 1991)

    Google Scholar 

  • C.D. Beachem, Microscopic Fracture Processes, in Fracture, an Advanced Treatise, ed. by H. Liebowitz. Microscopic and Macroscopic Fundamentals, vol. 1 (Academic, New York, 1968)

    Google Scholar 

  • A.H. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford University Press, London, 1956)

    Google Scholar 

  • D.K. Felbeck, A.G. Atkins, Strength and Fracture of Engineering Solids, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1996)

    Google Scholar 

  • A.A. Griffith, The phenomena of rupture, Proceedings of the 1st International Congress, Applied Mechanics (Delft, 1924), pp. 5563

    Google Scholar 

  • R.W. Hertzberg, Deformation & Fracture Mechanics of Engineering Materials, 4th edn. (Wiley, New York, 1996)

    Google Scholar 

  • L.S. Li, G. Wang, Introduction to Micromechanics and Nanomechanics (World Scientific, Hackensack, 2008)

    Book  MATH  Google Scholar 

  • M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    MATH  Google Scholar 

  • S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  • A.S. Tetelman, Fundamental Aspects of Stress Corrosion Cracking (National Association of Corrosion Engineers, Houston, 1969), p. 446

    Google Scholar 

  • H. Wada, N. Takimoto, I. Kondo, K. Murase, T.C. Kennedy, Estimation of Dynamic Fracture Toughness from Circumferentially Notched Round-Bar Specimens, Conference: 2004 SEM X International Congress and Exposition on Experimental and Applied Mechanics (2004)

    Google Scholar 

  • C. Zener, The Macro-Mechanism of Fracture, in Fracturing of Metals (American Society of Metals, Metals Park, 1948), p. 3

    Google Scholar 

  • R.W. Armstrong, Eng. Fract. Mech. 77, 1348 (2010)

    Article  MathSciNet  Google Scholar 

  • C.D. Beachem, Metal Trans. 3, 437 (1972)

    Article  Google Scholar 

  • C.J. Beevers, R.J. Cooke, J.F. Knott, R.O. Ritchie, Metal Sci. 9, 119 (1975)

    Article  Google Scholar 

  • H.K. Birnbaum, Hydrogen Related Failure Mechanisms in Metal, in Environment-Sensitive Fracture of Engineering Materials, ed. by Z.A. Foroulis (TMS-AIME, Warrendale, 1979), p. 326

    Google Scholar 

  • D. Broek, Eng. Fract. Mech. 5, 55 (1973)

    Article  Google Scholar 

  • M.D. Chapetti, Int. J. Fatigue 33, 833 (2011)

    Article  Google Scholar 

  • A.H. Cottrell, Theory of Brittle Fracture in Steel and Similar Metals. Trans. Metal. Soc. AIME 212, 192 (1958)

    Google Scholar 

  • A.H. Cottrell, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 276(1) (1963)

    Google Scholar 

  • J.K. Cuddy, M.N. Bassim, Mater. Sci. Eng. A125, 43 (1990)

    Google Scholar 

  • J. Daming, W. Yinong, H. Bande, L. Tingquan, S. Fenglian, J. Mater. Sci. Lett. 15, 1597 (1996)

    Google Scholar 

  • S. de Luna, J. Fernández-Sáez, J.L. Párez-Castellanos, C. Navarro, Int. J. Press. Vessel. Pip. 77, 691 (2000)

    Article  Google Scholar 

  • J. Eftis, H. Liebowitz, Int. J. Fract. Mech. 8, 383 (1972)

    Google Scholar 

  • R.N. Gardner, T.C. Pollock, H.G.F. Wilsdorf, Mater. Sci. Eng. 29, 169 (1977)

    Article  Google Scholar 

  • R.K. Govila, D. Hull, Acta Metall. 16, 45 (1968)

    Article  Google Scholar 

  • A.A. Griffith, Philos. Trans. R. Soc. Lond. A 221, 163 (1920)

    Article  Google Scholar 

  • G.I. Hahn, A.R. Rosenfeld, Acta Metall. 14, 1815 (1966)

    Article  Google Scholar 

  • E. Hayne Shumate Jr., The Radius of Curvature in the Prime Vertical. ITEA J. 30, 159 (2009)

    Google Scholar 

  • C.E. Inglis, Proc. Inst. Nav. Archit. 55, 219 (1913)

    Google Scholar 

  • C. Laird, G.C. Smith, Philos. Mag. 7, 847 (1962)

    Article  Google Scholar 

  • V. Levkovitch, R. Sievert, B. Svendsen, Int. J. Fract. 136, 207 (2005)

    Article  MATH  Google Scholar 

  • S. Liu, D. Liu, S. Liu, J. Mater. Sci. 42, 7514 (2007)

    Article  Google Scholar 

  • S.P. Lynch, Scripta Metall. 1067 (1986)

    Google Scholar 

  • S.P. Lynch, Acta Metall. 36, 2639 (1988)

    Article  Google Scholar 

  • S.P. Lynch, Metallography 23, 147 (1989)

    Article  Google Scholar 

  • L.E. Miller, G.C. Smith, J. Iron Steel Inst. 208, 998 (1970)

    Google Scholar 

  • Y. Murakami, S. Beretta, Extremes 2, 123 (1999)

    Article  MATH  Google Scholar 

  • Y. Murakami, M. Endo, Fatigue 16, 163 (1994)

    Article  Google Scholar 

  • H. Ohtani, C.J. McMahon Jr., Acta Metall. 23, 377 (1976)

    Google Scholar 

  • E. Orowan, Trans. Inst. Eng. Shipbuilders (Scotland) 89, 165 (1946)

    Google Scholar 

  • E. Orowan, Rep. Prog. Phys. 12, 185 (1949)

    Article  Google Scholar 

  • P.C. Paris, M. Gomez, W.E. Anderson, Trend Eng. 13, 1219 (1961)

    Google Scholar 

  • G.M. Pressouyre, J. Dollet, B. Vieillard-Baron, Mémoires et Etudes Scientifiques de la Revue de Metallurgie 79, 161 (1982)

    Google Scholar 

  • L. Qing-fen, L. Li, L. Er-bao, L. Dong, C. Xiu-fang, Scr. Mater. 53, 309 (2005)

    Article  Google Scholar 

  • E. Quadrini, Mater. Chem. Phys. 21, 437 (1989)

    Article  Google Scholar 

  • R.O. Ritchie, J.F. Knott, J.R. Rice, J. Mech. Phys. Solids 21, 395 (1973)

    Article  Google Scholar 

  • M. Sarfarazi, S.K. Ghosh, Eng. Fract. Mech. 27, 257 (1987)

    Article  Google Scholar 

  • M.M. Shea, N.S. Stoloff, Mater. Sci. Eng. 12, 245 (1973)

    Article  Google Scholar 

  • E. Smith, Int. J. Fract. Mech. 4, 131 (1968)

    Google Scholar 

  • J.F. Smith, J.H. Reynolds, H.N. Southworth, Acta Metall. 28, 1555 (1980)

    Article  Google Scholar 

  • K.-J. Soderholm, Dent. Mater. 26, e63 (2010)

    Article  Google Scholar 

  • L. Sohncke, Ann. Phys. Lpz. 137, 177 (1869)

    Article  Google Scholar 

  • A.N. Stroh, Proc. Roy. Soc. Lond. 223A, 548 (1955)

    Google Scholar 

  • A.N. Stroh, Adv. Phys. 6, 418 (1957)

    Article  Google Scholar 

  • D. Teirlinck, F. Zok, J.D. Embury, M.F. Ashby, Acta Metall. 36, 1213 (1988)

    Article  Google Scholar 

  • A.R. Troiano, Trans. ASM 52, 54 (1960)

    Google Scholar 

  • G.F. Vander Voort, Fractography. ASM Handbook, vol. 12 (ASM International, Metals Park, 1987), p. 102

    Google Scholar 

  • O. Vosikovsky, Eng. Fract. Mech. 11, 595 (1979)

    Article  Google Scholar 

  • X.J. Zhang, R.W. Armstrong, G.R. Irwin, Metall. Trans. A 20A, 2862 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pelleg, J. (2013). Fracture. In: Mechanical Properties of Materials. Solid Mechanics and Its Applications, vol 190. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4342-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4342-7_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4341-0

  • Online ISBN: 978-94-007-4342-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics