Skip to main content

The Use of Airborne Laser Swath Mapping on Fans and Cones: An Example from the Colorado Front Range

  • Chapter
  • First Online:
Dating Torrential Processes on Fans and Cones

Part of the book series: Advances in Global Change Research ((AGLO,volume 47))

Abstract

Debris fan systems are common features of mountainous environments, particularly in formerly glaciated valleys in the Arctic, Antarctic, and high mountains of the lower latitudes (Rapp 1960a, b; Albjar et al. 1979; Church et al. 1979; White 1981; Caine 1983; Perez 1993). The prevalence of these landforms in these physiographic settings is attributed to rapid weathering associated with the presence of oversteepened valley sides, stress unloading of rock walls following deglaciation, and the severity of the climate (Matsuoka and Sakai 1999; Ballantyne 2002; Curry and Morris 2004). These factors are conducive to the development of fan deposits by rockfall, debris-flow and avalanche activity, each of which represent a significant hazards to fan areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerman HJ (1994) Notes on talus morphology and processes in Spitsbergen. Geogr Ann Ser A Phys Geogr 66:267–285

    Article  Google Scholar 

  • Albjar G, Rehn J, Stromquist L (1979) Notes on talus formation in different climates. Geogr Ann Ser A Phys Geogr 61(3–4):179–185

    Article  Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017

    Article  Google Scholar 

  • Blaszczynski JS (1997) Landform characterization with geographic information systems. Photogramm Eng Remote Sens 63(2):183–191

    Google Scholar 

  • Blikra LH, Nemec W (1998) Postglacial colluvium in western Norway: depositional processes, facies and paleoclimatic record. Sedimentology 45:909–959

    Article  CAS  Google Scholar 

  • Bones JG (1973) Processes and sediment size arrangement on high arctic talus, southwest Devon Island, NWT, Canada. Arct Alp Res 5(1):29–40

    Article  Google Scholar 

  • Bull WB, Schlyter P, Brogaard S (1995) Lichenometric analysis of the Karkerieppe slush-avalanche fan, Karkevagge, Sweden. Geogr Ann Ser A Phys Geogr 77(4):231–240

    Article  Google Scholar 

  • Caine N (1967) The texture of talus in Tasmania. J Sediment Petrol 37(3):796–803

    Google Scholar 

  • Caine N (1969) A model for alpine talus slope development by slush avalanching. J Geol 77(1):92–100

    Article  Google Scholar 

  • Caine N (1983) The mountains of northeastern Tasmania. AA Balkema, Rotterdam, 201 pp

    Google Scholar 

  • Carson MA (1977) Angle of repose, angles of shearing resistance and angles of talus slopes. Earth Surf Process Landf 2(4):363–380

    Google Scholar 

  • Carter W, Shrestha R, Tuell G, Bloomquist D, Sartori M (2001) Airborne laser mapping shines new light on Earth’s topography. EOS Trans Am Geophys Union 82(46):549, 550, 555

    Article  Google Scholar 

  • Catani F, Farina P, Moretti S (2003) Spaceborne radar interferometry: a promising tool for hydrological analysis in mountain alluvial fan environments. In: Erosion prediction in ungaged basins: integrating methods and technique, IAHS publication No. 279. IAHS, Wallingford, pp 241–248

    Google Scholar 

  • Catani F, Farina P, Moretti S, Nico G, Strozzi T (2005) On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements. Geomorphology 66:119–131

    Article  Google Scholar 

  • Cavalli M, Marchi L (2008) Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Nat Hazard Earth Syst Sci 8:323–333

    Article  Google Scholar 

  • Church M, Stock RF, Ryder M (1979) Contemporary sedimentary environments on Baffin Island, NWT Canada: debris slope accumulations. Arct Alp Res 11(4):371–402

    Article  Google Scholar 

  • Coe JA, Glancy PA, Whitney JW (1997) Volumetric analysis and hydrologic characterization of a modern debris flow near Yucca Mountain, Nevada. Geomorphology 20:11–28

    Article  Google Scholar 

  • Crosta GB, Frattini P (2004) Controls on modern alluvial fan processes in the central Alps, northern Italy. Earth Surf Process Landf 29:267–293

    Article  Google Scholar 

  • Curry AM, Morris CJ (2004) Lateglacial and Holocene talus slope development and rockwall retreat on Mynydd Du, UK. Geomorphology 58:85–106

    Article  Google Scholar 

  • Decaulne A, Saemundsson P (2006) Meteorological conditions during slushflow release and their geomorphic impact in the northwestern Icelandic Westfjords. Geomorphology 80(1–2):80–93

    Article  Google Scholar 

  • Dorren LKA (2003) A review of rockfall mechanics and modeling approaches. Prog Phys Geogr 27(1):69–87

    Article  Google Scholar 

  • Farr TG, Chadwick OA (1996) Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains, China. J Geophys Res 101(E10):23091–23100

    Article  Google Scholar 

  • Francou B, Mante C (1990) Analysis of the segmentation in the profile of alpine talus slopes. Permafr Periglac Process 1(1):53–60

    Article  Google Scholar 

  • Frankel KL, Dolan JF (2007) Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topgraphic data. J Geophys Res 112:F02025

    Article  Google Scholar 

  • Gardner J (1970) Geomorphic significance of avalanches in the Lake Louise area, Alberta, Canada. Arct Alp Res 2(2):135–144

    Article  Google Scholar 

  • Gens R, van Genderen JL (1996) Review article SAR interferometry – issues, techniques, applications. Int J Remote Sens 17(10):1803–1835

    Article  Google Scholar 

  • Godt JW, Coe JA (2007) Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado. Geomorphology 84:80–97

    Article  Google Scholar 

  • Jomelli V, Bertran P (2001) Wet snow avalanche deposits in the French Alps: structure and sedimentology. Geogr Ann Ser A Phys Geogr 83(1–2):15–28

    Google Scholar 

  • Jomelli V, Francou B (2000) Comparing the characteristics of rockfall talus and snow avalanche landforms in an alpine environment using a new methodological approach, Massif de Ecrins, French Alps. Geomorphology 35(3–4):181–192

    Article  Google Scholar 

  • Kellogg KS, Shroba RR, Bryant B, Premo WR (2008) Geologic map of the Denver West 30′ × 60′ Quadrangle, North-Central Colorado: U.S. Geological Survey Scientific Investigations Map 3000, scale 1:100,000, 48 pp

    Google Scholar 

  • Kirkby MJ, Statham I (1975) Surface stone movement and scree formation. J Geol 83(3):349–362

    Article  Google Scholar 

  • Lane SN, Richards KS, Chandler JH (1993) Developments in photogrammetry: the geomorphic potential. Prog Phys Geogr 17(3):306–328

    Article  Google Scholar 

  • Lane SN, James TD, Crowell MD (2000) Application of digital photogrammetry for complex topography for geomorphological research. Photogramm Rec 16(95):793–821

    Article  Google Scholar 

  • Luckman BH (1977) The geomorphic activity of snow avalanches. Geogr Ann Ser A Phys Geogr 59(1–2):31–48

    Article  Google Scholar 

  • Massonnet D, Feigl K (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36(4):441–500

    Article  Google Scholar 

  • Matsuoka N, Sakai H (1999) Rockfall activity from an alpine cliff during thawing periods. Geomorphology 28:309–328

    Article  Google Scholar 

  • Nyberg R (1989) Observations of slush flows and their geomorphological effects in the Swedish mountain area. Geogr Ann Ser A Phys Geogr 71(3–4):185–198

    Article  Google Scholar 

  • Okada Y, Hirao C, Horiuchi T, Hara Y, Yedidia JS, Azarbayejani A, Oishi N (2007) Highly Accurate DSM Reconstruction Using Ku-band Airborne InSAR. IEEE Int Geosci Remote Sens Soc Symp (IGARSS):5049–5052. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4423996

  • Olivera F, Valenzuela M (2006) Watershed and stream delineation tool 2002. Available from http://ceprofs.tamu.edu/folivera/GISTools/wsdt/home.htm. Cited 15 Mar 2006

  • Perez F (1989) Talus fabric and particle morphology on Lassen Peak, California. Geogr Ann Ser A Phys Geogr 71(1–2):43–57

    Article  Google Scholar 

  • Perez F (1993) Talus movement in the high Equatorial Andes: a synthesis of ten years of data. Permafr Periglac Process 4:199–215

    Article  Google Scholar 

  • Perez F (1998) Talus fabric, clast morphology, and botanical indicators of slope processes on the Chaos Crags (California Cascades), USA. Geogr Phys Quat 52(1):47–68

    Google Scholar 

  • Rapp A (1960a) Recent development of mountain slopes in Karkevagge and surroundings, northern Scandinavia. Geogr Ann Ser A Phys Geogr 42(2–3):65–200

    Google Scholar 

  • Rapp A (1960b) Talus slopes and mountain walls at Tempelfjorden, Spitsbergen, Norsk Polarinstitutt Skrifter 119. Oslo University Press, Oslo, 96 pp

    Google Scholar 

  • Roering JJ, Stimley LL, Mackey BH, Schmidt DA (2009) Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport. Geophys Res Lett 36:L19402

    Article  Google Scholar 

  • Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88:333–382

    Article  Google Scholar 

  • Schumm SA (1991) To interpret the Earth, ten ways to be wrong. Cambridge University Press, New York, 133 pp

    Google Scholar 

  • Schumm SA, Lichty RW (1965) Time, space and causality in geomorphology. Am J Sci 263:110–119

    Article  Google Scholar 

  • Shan J, Toth KC (2009) Topographic laser ranging and scanning – principles and processing. CRC Press, Boca Raton, 590 pp

    Google Scholar 

  • Shrestha RL, Carter WE, Lee M, Finer P, Sartori M (1999) Airborne laser swath mapping: accuracy assessment for surveying and mapping applications. J Am Congr Surv Mapp 59(2):83–94

    Google Scholar 

  • Slatton KC, Carter WE, Shrestha RL, Dietrich W (2007) Airborne laser swath mapping: achieving the resolution and accuracy required for geosurficial research. Geophys Res Lett 35:L23S10

    Article  Google Scholar 

  • Staley DM (2006) Process and form on Alpine Talus Cone Systems, Front Range, Colorado, USA. Unpublished PhD dissertation, University of Memphis, Memphis, 214 pp

    Google Scholar 

  • Staley DM, Wasklewicz TA, Blaszczynski JS (2006) Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data. Geomorphology 74:152–163

    Article  Google Scholar 

  • Statham I (1976) A scree slope rockfall model. Earth Surf Process 1:43–62

    Article  Google Scholar 

  • Trevisani S, Cavalli M, Marchi L (2009) Variogram maps from LiDAR data as fingerprints of surface morphology on scree slopes. Nat Hazard Earth Syst Sci 9:129–133

    Article  Google Scholar 

  • van Steijn H (2002) Long-term landform evolution; evidence from talus studies. Earth Surf Process Landf 27(11):1189–1199

    Article  Google Scholar 

  • van Steijn H, Bertran P, Francou B, Hetu B, Texier J-P (1995) Models for the genetic and environmental interpretation of stratified slope deposits: review. Permafr Periglac Process 6:125–146

    Article  Google Scholar 

  • van Steijn H, Boelhouwers J, Harris S, Hetu B (2002) Recent research on the nature, origin and climatic relations of blocky and stratified slope deposits. Prog Phys Geogr 26(4):551–575

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement and types and processes. In: Schuster RL, Krizek RJ (eds) Landslides: analysis and control, National Research Council, Transportation Research Board, special report 247. National Academy of Sciences, Washington, DC, pp 76–90

    Google Scholar 

  • Volker HX, Wasklewicz TA, Ellis MA (2007) A topographic fingerprint to distinguish Holocene alluvial fan formative processes. Geomorphology 88:34–45

    Article  Google Scholar 

  • Vosselman G, Maas HG (2010) Airborne and terrestrial laser scanning. Whittles Publishing, Dunbeath, 336 pp

    Google Scholar 

  • Wasklewicz TA, Mihir MA, Whitworth J (2008) Surface variability of alluvial fans generated by disparate processes, eastern Death Valley, CA. Prof Geogr 60(2):207–223

    Article  Google Scholar 

  • Whalley WB (1984) Rockfalls. In: Brundsen D, Prior DB (eds) Slope instability. Wiley, New York, pp 217–255

    Google Scholar 

  • White SE (1981) Alpine mass movement forms (non-catastrophic): classification, description and significance. Arct Alp Res 13(2):127–137

    Article  Google Scholar 

  • Williams FJ (1951) The geology of the Stevens Mine. Unpublished Masters thesis, Department of Geology, Colorado School of Mines, Golden, CO, USA

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 05–02343 (Doctoral Dissertation Research: Process – form linkages in alpine talus deposits, Front Range, Colorado, USA) and Grant No. 02–39749 (CAREER: Alluvial fan form quantification to advance geographic science and education). Any opinions, finding, or conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors gratefully acknowledge Jeff Coe and Jason Kean for reviews that have dramatically improved this manuscript. We also would like to acknowledge Chris Smith for assistance in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis M. Staley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Staley, D.M., Wasklewicz, T.A. (2013). The Use of Airborne Laser Swath Mapping on Fans and Cones: An Example from the Colorado Front Range. In: Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (eds) Dating Torrential Processes on Fans and Cones. Advances in Global Change Research, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4336-6_9

Download citation

Publish with us

Policies and ethics