Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

Abstract

A lipopolysaccharide (LPS) is considered to be one of the major determinants of virulence expression and infection of virulent Coxiella burnetii. The LPSs from virulent phase I (LPS I) and from avirulent phase II (LPS II) bacteria were investigated for their chemical composition, structure and biological properties. LPS II is of rough (R) type in contrast to LPS I, which is phenotypically smooth (S) and contains a noticeable amount of two sugars virenose (Vir) and dihydrohydroxystreptose (Strep), which have not been found in other LPSs and can be considered as unique biomarkers of the bacterium. Both sugars were suggested to be located mostly in terminal positions of the O-specific chain of LPS I (O-PS I) and to be involved in the immunobiology of Q fever. There is a need to establish a more detailed chemical structure of LPS I in connection with prospective, deeper studies on mechanisms of pathogenesis and immunity of Q fever, its early and reliable diagnosis, and effective prophylaxis against the disease. This will also help to better understanding of host-pathogen interactions and contribute to improved modulation of pathological reactions which in turn are prerequisite for research and development of vaccines of new type. A fundamental understanding of C. burnetii LPS biosynthesis is still lacking. The intracellular nature of the bacterium, lack of genetic tools and its status as a selected agent have made elucidating basic physiological mechanisms challenging. The GDP-β-D-Vir biosynthetic pathway proposed most recently is an important initial step in this endeavour. The current advanced technologies providing the genetic tools necessary to screen C. burnetii mutants and propagate isogenic mutants might speed the discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander C, Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202

    PubMed  CAS  Google Scholar 

  • Al-Hendy A, Toivanen P, Skurnik M (1991) Expression cloning of Yersinia enterocolitica O:3 rfb gene cluster in Escherichia coli K12. Microb Pathog 10:47–59

    PubMed  CAS  Google Scholar 

  • Amano K, Williams JC (1984) Chemical and immunological characterization of lipopolysaccharides from phase I and phase II Coxiella burnetii. J Bacteriol 160:994–1002

    PubMed  CAS  Google Scholar 

  • Amano K, Williams JC, Missler SR et al (1987) Structure and biological relationships of Coxiella burnetii lipopolysaccharides. J Biol Chem 262:4740–4747

    PubMed  CAS  Google Scholar 

  • Aschauer H, Grob A, Hildebrandt J et al (1990) Highly purified lipid X is devoid of immunostimulatory activity. Isolation and characterization of immunostimulating contaminants in a batch of synthetic lipid X. J Biol Chem 265:9159–9164

    PubMed  CAS  Google Scholar 

  • Awomoyi AA, Rallabhandi P, Pollin TI et al (2007) Association of TLR4 polymorphisms with asymptomatic respiratory syncytial virus infection in high-risk infants and young children. J Immunol 179:3171–3177

    PubMed  CAS  Google Scholar 

  • Baca OG, Martinez IL, Aragon AS et al (1980) Isolation and partial characterization of a lipopolysaccharide from phase II Coxiella burnetii. Can J Microbiol 26:819–826

    CAS  Google Scholar 

  • Bisercic M, Feutrier JY, Reeves PR (1991) Nucleotide sequences of the gnd genes from nine natural isolates of Escherichia coli: evidence of intragenic recombination as a contributing factor in the evolution of the polymorphic gnd locus. J Bacteriol 173:3894–3900

    PubMed  CAS  Google Scholar 

  • Bowen RA (2008) Protein hydrophobicity plots. http://www.vivo.colostate.edu/molkit/hydropathy/index.html

  • Bulut Y, Faure E, Thomas L et al (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168:1435–1440

    PubMed  CAS  Google Scholar 

  • Burns SM, Hull SI (1998) Comparison of loss of serum resistance by defined lipopolysaccharide mutants and an acapsular mutant of uropathogenic Escherichia coli O75:K5. Infect Immun 66:4244–4253

    PubMed  CAS  Google Scholar 

  • Capo C, Zugun F, Stein A et al (1996) Upregulation of tumor necrosis factor-α and interleukin-1β in Q fever endocarditis. Infect Immun 64:1638–1642

    PubMed  CAS  Google Scholar 

  • Capo C, Amirayan N, Ghigo E et al (1999) Circulating cytokine balance and activation markers of leucocytes in Q fever. Clin Exp Immunol 115:120–123

    PubMed  CAS  Google Scholar 

  • Caroff M, Brisson JR, Martin A et al (2000) Structure of the Bordetella pertussis 1414 endotoxin. FEBS Lett 477:8–14

    PubMed  CAS  Google Scholar 

  • Chen MM, Glover KJ, Imperiali B (2007) From peptide to protein: comparative analysis of the substrate specificity of N-linked glycosylation in Campylobacter jejuni. Biochemistry 46:5579–5585

    PubMed  CAS  Google Scholar 

  • Clarke BR, Cuthbertson L, Whitfield C (2004) Nonreducing terminal modifications determine the chain length of polymannose O-antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J Biol Chem 279:35709–35718

    PubMed  CAS  Google Scholar 

  • Coleman SA, Fischer ER, Howe D et al (2004) Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 186:7344–7352

    PubMed  CAS  Google Scholar 

  • Coleman SA, Fischer ER, Cockrell DC et al (2007) Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect Immun 75:290–298

    PubMed  CAS  Google Scholar 

  • Darveau RP, Pham TT, Lemley K et al (2004) Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infect Immun 72:5041–5051

    PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Capo C, Raoult D et al (1999) IFN-γ-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J Immunol 162:2259–2265

    PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Ghigo E, Capo C et al (2000a) Coxiella burnetii survives in monocytes from patients with Q fever endocarditis: involvement of tumor necrosis factor. Infect Immun 68:160–164

    PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Ghigo E, Machergui-El Hammami S et al (2000b) Alpha(v)beta(3) integrin and bacterial lipopolysaccharide are involved in Coxiella burnetii-stimulated production of tumor necrosis factor by human monocytes. Infect Immun 68:5673–5678

    PubMed  CAS  Google Scholar 

  • Demerec M, Adelberg EA, Clark AJ et al (1966) A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76

    PubMed  CAS  Google Scholar 

  • Denison AM, Massung RF, Thompson HA (2007) Analysis of the O-antigen biosynthesis regions of phase II isolates of Coxiella burnetii. FEMS Microbiol Lett 267:102–107

    PubMed  CAS  Google Scholar 

  • Diaz QM, Lukacova M (1998) Immunological consequences of Coxiella burnetii phase variation. Acta Virol 42:181–185

    CAS  Google Scholar 

  • Dotson SB, Rush JS, Ricketts AD et al (1995) Mannosylphosphoryldolichol-mediated O-mannosylation of yeast glycoproteins: stereospecificity and recognition of the alpha-isoprene unit by a purified mannosyltransferase. Arch Biochem Biophys 316:773–779

    PubMed  CAS  Google Scholar 

  • Doyle SL, O’ Neill LA (2006) Toll-like receptors from the discovery of NF-χB to new insights into transcriptional regulations in innate imunity. Biochem Pharmacol 72:1102–1113

    PubMed  CAS  Google Scholar 

  • D’Souza-Schorey C, McLachlan KR, Krag SS et al (1994) Mammalian glycosyltransferases prefer glycosyl phosphoryl dolichols rather than glycosyl phosphoryl polyprenols as substrates for oligosaccharyl synthesis. Arch Biochem Biophys 308:497–503

    PubMed  Google Scholar 

  • Emmerson JR, Gally DL, Roe AJ (2006) Generation of gene deletions and gene replacements in Escherichia coli O157:H7 using a temperature sensitive allelic exchange system. Biol Proced Online 8:153–162

    PubMed  CAS  Google Scholar 

  • Erridge C, Bennett-Guerrero E, Poxton IR (2002) Structure and function of lipopolysaccharides. Microbes Infect 4:837–851

    PubMed  CAS  Google Scholar 

  • Flebbe LM, Chapes SK, Morrison DC (1990) Activation of C3H/HeJ macrophage tumoricidal activity and cytokine release by R-chemotype lipopolysaccharide preparations. J Immunol 145:505–514

    Google Scholar 

  • Ftacek P, Skultety L, Toman R (2000) Phase variation of Coxiella burnetii strain Priscilla: influence of this phenomenon on biochemical features of its lipopolysaccharide. J Endotoxin Res 6:369–376

    PubMed  CAS  Google Scholar 

  • Gajdosova E, Kovacova E, Toman R et al (1994) Immunogenicity of Coxiella burnetii whole cells and their outer membrane components. Acta Virol 38:339–344

    PubMed  CAS  Google Scholar 

  • Girard R, Pedron T, Uematsu S et al (2003) Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via toll-like receptor 2. J Cell Sci 116:293–302

    PubMed  CAS  Google Scholar 

  • Golenbock DT, Hampton RY, Qureshi N et al (1991) Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem 266:19490–19498

    PubMed  CAS  Google Scholar 

  • Gunn JS, Ernst RK (2007) The structure and function of Francisella lipopolysaccharide. Ann NY Acad Sci 1105:202–218

    PubMed  CAS  Google Scholar 

  • Hackstadt T (1986) Antigenic variation in the phase I lipopolysaccharide of Coxiella burnetii isolates. Infect Immun 52:337–340

    PubMed  CAS  Google Scholar 

  • Hackstadt T, Peacock MG, Hitchcock PJ et al (1985) Lipopolysaccharide variation in Coxiella burnetii: intrastrain heterogeneity in structure and antigenicity. Infect Immun 48:359–365

    PubMed  CAS  Google Scholar 

  • Hajjar AM, O’Mahony DS, Ozinsky A et al (2001) Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 166:15–19

    PubMed  CAS  Google Scholar 

  • Heinrichs DE, Whitfield C, Valvano MA (1999) Biosynthesis and genetics of lipopolysaccharide core. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York/Basel, pp 305–330

    Google Scholar 

  • Heinzen RA, Hackstadt T (1996) A developmental stage-specific histone H1 homolog of Coxiella burnetii. J Bacteriol 178:5049–5052

    PubMed  CAS  Google Scholar 

  • Helbig JH, Luck PC, Knirel YA et al (1995) Molecular characterization of a virulence-associated epitope on the lipopolysaccharide of Legionella pneumophila serogroup 1. Epidemiol Infect 115:71–78

    PubMed  CAS  Google Scholar 

  • Hirschfeld M, Weiss JJ, Toshchakov V et al (2001) Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 69:1477–1482

    PubMed  CAS  Google Scholar 

  • Hobbs M, Reeves PR (1994) The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. Mol Microbiol 12:855–856

    PubMed  CAS  Google Scholar 

  • Hollenstein K, Dawson RJ, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17:412–418

    PubMed  CAS  Google Scholar 

  • Holst O (1999) Chemical structure of the core region of lipopolysaccharides. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York/Basel, pp 115–154

    Google Scholar 

  • Honstettre A, Ghigo E, Moynnault A et al (2004) Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through toll-like receptor 4. J Immunol 172:3695–3703

    PubMed  CAS  Google Scholar 

  • Hoover TA, Culp DW, Vodkin MH et al (2002) Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (Crazy), of the Coxiella burnetii nine mile strain. Infect Immun 70:6726–6733

    PubMed  CAS  Google Scholar 

  • Hussein A, Kovacova E, Toman R (2001) Isolation and evaluation of Coxiella burnetii O-polysaccharide antigen as immunodiagnostic reagent. Acta Virol 45:173–180

    PubMed  CAS  Google Scholar 

  • Jimenez de Bagues MP, Gross A, Terraza A et al (2005) Cellular bioterrorism: how Brucella corrupts macrophage physiology to promote invasion and proliferation. Clin Immunol 114:227–238

    PubMed  CAS  Google Scholar 

  • Joiner KA (1988) Complement evasion by bacteria and parasites. Ann Rev Microbiol 42:201–230

    CAS  Google Scholar 

  • Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann NY Acad Sci 1143:1–20

    PubMed  CAS  Google Scholar 

  • Kean EL, Rush JS, Waechter CJ (1994) Activation of GlcNAc-P-P-dolichol synthesis by mannosylphosphoryldolichol is stereospecific and requires a saturated alpha-isoprene unit. Biochemistry 33:10508–10512

    PubMed  CAS  Google Scholar 

  • Keenleyside WJ, Whitfield C (1999) Genetics and biosynthesis of lipopolysaccharide O-antigens. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York/Basel, pp 331–358

    Google Scholar 

  • King JD, Kocincova D, Westman EL et al (2009) Review: lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 15:261–312

    PubMed  CAS  Google Scholar 

  • Knirel YA, Rietschel ET, Marre R et al (1994) The structure of the O-specific chain of Legionella pneumophila serogroup 1 lipopolysaccharide. Eur J Biochem 221:239–245

    PubMed  CAS  Google Scholar 

  • Kubes M, Kuzmova Z, Gajdosova E et al (2006) Induction of tumor necrosis factor alpha in murine macrophages with various strains of Coxiella burnetii and their lipopolysaccharides. Acta Virol 50:93–99

    PubMed  CAS  Google Scholar 

  • Lien E, Sellati TJ, Yoshimura A et al (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274:33419–33425

    PubMed  CAS  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    PubMed  CAS  Google Scholar 

  • Lorenz E, Mira JP, Cornish KL et al (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68:6398–6401

    PubMed  CAS  Google Scholar 

  • Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151

    PubMed  CAS  Google Scholar 

  • Luck PC, Freier T, Steudel C et al (2001) Point mutation in the active site of Legionella pneumophila O-acetyltransferase results in modified lipopolysaccharide but does not influence virulence. Int J Med Microbiol 291:345–352

    PubMed  CAS  Google Scholar 

  • Luneberg E, Zahringer U, Knirel YA et al (1998) Phase-variable expression of lipopolysaccharide contributes to the virulence of Legionella pneumophila. J Exp Med 188:49–60

    PubMed  CAS  Google Scholar 

  • Luneberg E, Zetzmann N, Alber D et al (2000) Cloning and functional characterization of a 30 kb gene locus required for lipopolysaccharide biosynthesis in Legionella pneumophila. Int J Med Microbiol 290:37–49

    PubMed  CAS  Google Scholar 

  • Luneberg E, Mayer B, Daryab N et al (2001) Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila. Mol Microbiol 39:1259–1271

    PubMed  CAS  Google Scholar 

  • Malley R, Hennecke P, Morse SC et al (2003) Recognition of pneumolysin by toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100:1966–1971

    PubMed  CAS  Google Scholar 

  • Marrie TJ, Raoult D (1997) Q fever – a review and issues for the next century. J Antimicrob Agents 8:145–161

    CAS  Google Scholar 

  • Mayer H, Radziejewska-Lebrecht J, Schramek S (1988) Chemical and immunochemical studies on lipopolysaccharides of Coxiella burnetii phase I and phase II. Adv Exp Med Biol 228:577–591

    PubMed  CAS  Google Scholar 

  • McCaul TF, Banerjee-Bhatnagar N, Williams JC (1991) Antigenic differences between Coxiella burnetii cells revealed by postembedding immunoelectron microscopy and immunoblotting. Infect Immun 59:3243–3253

    PubMed  CAS  Google Scholar 

  • McLachlan KR, Krag SS (1994) Three enzymes involved in oligosaccharide-lipid assembly in Chinese hamster ovary cells differ in lipid substrate preference. J Lipid Res 35:1861–1868

    PubMed  CAS  Google Scholar 

  • Meghari S, Honstettre A, Lepidi H et al (2005) TLR2 is necessary to inflammatory response in Coxiella burnetii infection. Ann NY Acad Sci 1063:161–166

    PubMed  Google Scholar 

  • Moran AP, Zähringer U, Seydel U et al (1991) Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-D-glucose and 2,3-diamino-2,3-dideoxy-D-glucose. Eur J Biochem 198:459–469

    PubMed  CAS  Google Scholar 

  • Nagy G, Palkovics T, Otto A et al (2008) “Gently rough”: the vaccine potential of a Salmonella enterica regulatory lipopolysaccharide mutant. J Infect Dis 198:1699–1706

    PubMed  CAS  Google Scholar 

  • Narasaki CT, Mertens K, Samuel JE (2011) Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-β-D-virenose biosynthesis. PLoS One 6(10):e25514

    PubMed  CAS  Google Scholar 

  • Nelson K, Selander RK (1994) Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. Proc Natl Acad Sci USA 91:10227–10231

    PubMed  CAS  Google Scholar 

  • Nesper J, Lauriano CM, Klose KE et al (2001) Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69:435–445

    PubMed  CAS  Google Scholar 

  • O’Neill LA (2006) How toll-like receptors signal: what we know and what we don’t know. Curr Opin Immunol 18:3–9

    PubMed  Google Scholar 

  • Palkovicova K, Ihnatko R, Vadovic P et al (2009) A monoclonal antibody specific for a unique biomarker virenose in a lipopolysaccharide of Coxiella burnetii. Clin Microbiol Infect 15:183–184

    PubMed  CAS  Google Scholar 

  • Pretat L, Toman R, Vadovic P et al (2009) Intracellular trafficking of the Coxiella burnetii lipopolysaccharide. Clin Microbiol Infect 15:185–187

    PubMed  CAS  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Ann Rev Biochem 71:635–700

    PubMed  CAS  Google Scholar 

  • Reeves PR, Hobbs M, Valvano MA et al (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503

    PubMed  CAS  Google Scholar 

  • Rietschel ET, Brade H, Brade L et al (1987) Lipid A, the endotoxic centre of bacterial lipopolysaccharides: relation of chemical structure to biological activity. Prog Clin Biol Res 231:25–53

    PubMed  CAS  Google Scholar 

  • Rietschel ET, Kirikae T, Schade U et al (1993) The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology 187:169–190

    PubMed  CAS  Google Scholar 

  • Rocchetta HL, Burrows LL, Lam JS (1999) Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63:523–553

    PubMed  CAS  Google Scholar 

  • Rojas G, Saldias S, Bittner M et al (2001) The rfaH gene, which affects lipopolysaccharide synthesis in Salmonella enterica serovar Typhi, is differentially expressed during the bacterial growth phase. FEMS Microbiol Lett 204:123–128

    PubMed  CAS  Google Scholar 

  • Rush JS, Shelling JG, Zingg NS et al (1993) Mannosylphosphoryldolichol-mediated reactions in oligosaccharide-P-P-dolichol biosynthesis. Recognition of the saturated alpha-isoprene unit of the mannosyl donor by pig brain mannosyltransferases. J Biol Chem 268:13110–13117

    PubMed  CAS  Google Scholar 

  • Rush JS, Rick PD, Waechter CJ (1997) Polyisoprenyl phosphate specificity of UDP-GlcNAc: undecaprenyl phosphate N-acetylglucosaminyl 1-P transferase from E.coli. Glycobiology 7:315–322

    PubMed  CAS  Google Scholar 

  • Rush JS, Alaimo C, Robbiani R et al (2010) A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157. J Biol Chem 285:1671–1680

    PubMed  CAS  Google Scholar 

  • Samuel G, Reeves P (2003) Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338:2503–2519

    PubMed  CAS  Google Scholar 

  • Sandlin RC, Lampel KA, Keasler SP et al (1995) Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun 63:229–237

    PubMed  CAS  Google Scholar 

  • Sandlin RC, Goldberg MB, Maurelli AT (1996) Effect of O side-chain length and composition on the virulence of Shigella flexneri 2a. Mol Microbiol 22:63–73

    PubMed  CAS  Google Scholar 

  • Schramek S, Mayer H (1982) Different sugar composition of lipopolysaccharides isolated from phase I and pure phase II cells of Coxiella burnetii. Infect Immun 38:53–57

    PubMed  CAS  Google Scholar 

  • Schramek S, Radziejewska-Lebrecht J, Mayer H (1985) 3-C-branched aldoses in lipopolysaccharide of phase I Coxiella burnetii and their role as immunodominant factors. Eur J Biochem 148:445–461

    Google Scholar 

  • Seshadri R, Hendrix LR, Samuel JE (1999) Differential expression of translational elements by life cycle variants of Coxiella burnetii. Infect Immun 67:6026–6033

    PubMed  CAS  Google Scholar 

  • Seshadri R, Paulsen IT, Eisen JA et al (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci USA 100:5455–5460

    PubMed  CAS  Google Scholar 

  • Seydel U, Wiese A, Schromm AB et al (1999) A biophysical view on the function and activity of endotoxins. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York/Basel, pp 195–219

    Google Scholar 

  • Shannon JG, Howe D, Heinzen RA (2005) Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci USA 102:8722–8727

    PubMed  CAS  Google Scholar 

  • Shimazu R, Akashi S, Ogata H et al (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med 189:1777–1782

    PubMed  CAS  Google Scholar 

  • Skultety L, Toman R, Patoprsty V (1998) A comparative study of lipopolysaccharides from two Coxiella burnetii strains considered to be associated with acute and chronic Q fever. Carbohydr Polymers 35:189–194

    CAS  Google Scholar 

  • Skultety L, Hernychova L, Toman R et al (2005) Coxiella burnetii whole cell lysate protein identification by mass spectrometry and tandem mass spectrometry. Ann NY Acad Sci 1063:115–122

    PubMed  CAS  Google Scholar 

  • Skurnik M, Toivanen P (1993) Yersinia enterocolitica lipopolysaccharide: genetics and virulence. Trends Microbiol 1:148–152

    PubMed  CAS  Google Scholar 

  • Slaba K, Hussein A, Palkovic P et al (2003) Studies on immunological role of virenose and dihydrohydroxystreptose present in the Coxiella burnetii phase I lipopolysaccharide. Ann NY Acad Sci 990:505–509

    PubMed  CAS  Google Scholar 

  • Stoker MG, Fiset P (1956) Phase variation of the Nine Mile and other strains of Rickettsia burneti. Can J Microbiol 2:310–321

    PubMed  CAS  Google Scholar 

  • Stroeher UH, Jedani KE, Manning PA (1998) Genetic organization of the regions associated with surface polysaccharide synthesis in Vibrio cholerae O1, O139 and Vibrio anguillarum O1 and O2: a review. Gene 223:269–282

    PubMed  CAS  Google Scholar 

  • Svraka S, Toman R, Skultety L et al (2006) Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett 254:268–274

    PubMed  CAS  Google Scholar 

  • Szkopinska A, Swiezewska E, Chojnacki T (1992) On the specificity of dolichol kinase and DolPMan synthase towards isoprenoid alcohols of different chain length in rat liver micro-somal membrane. Int J Biochem 24:1151–1157

    PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    PubMed  CAS  Google Scholar 

  • Thompson HA, Hoover TA, Vodkin MH et al (2003) Do chromosomal deletions in the lipopolysaccharide biosynthetic regions explain all cases of phase variation in Coxiella burnetii strains? An update. Ann NY Acad Sci 990:664–670

    PubMed  CAS  Google Scholar 

  • Toman R (1991) Basic structural features of a lipopolysaccharide from the Coxiella burnetii strain Nine Mile in the virulent phase I. Acta Virol 35:224

    Google Scholar 

  • Toman R, Kazar J (1991) Evidence for the structural heterogeneity of the polysaccharide component of Coxiella burnetii strain Nine Mile lipopolysaccharide. Acta Virol 35:531–537

    PubMed  CAS  Google Scholar 

  • Toman R, Skultety L (1994) Analysis of the 3-deoxy-D-manno-2-octulosonic acid region in a lipopolysaccharide isolated from Coxiella burnetii strain Nine Mile in phase II. Acta Virol 38:241–243

    PubMed  CAS  Google Scholar 

  • Toman R, Skultety L (1996) Structural study on a lipopolysaccharide from Coxiella burnetii strain Nine Mile in avirulent phase II. Carbohydr Res 283:175–185

    PubMed  CAS  Google Scholar 

  • Toman R, Skultety L, Kazar J (1993) On the determination of “Kdo-like substance” in the lipopolysaccharide from Coxiella burnetii strain Nine Mile in phase II. Acta Virol 37:196–198

    PubMed  CAS  Google Scholar 

  • Toman R, Skultety L, Ftacek P et al (1998) NMR study of virenose and dihydrohydroxystreptose isolated from Coxiella burnetii phase I lipopolysaccharide. Carbohydr Res 306:291–296

    PubMed  CAS  Google Scholar 

  • Toman R, Hussein A, Palkovic P et al (2003a) Structural properties of lipopolysaccharides from Coxiella burnetii strains Henzerling and S. Ann NY Acad Sci 990:563–567

    PubMed  CAS  Google Scholar 

  • Toman R, Hussein A, Slaba K et al (2003b) Further structural characteristics of the lipopolysaccharide from Coxiella burnetii strain Nine Mile in low virulent phase II. Acta Virol 47:129–130

    PubMed  CAS  Google Scholar 

  • Toman R, Garidel P, Andra J et al (2004) Physicochemical characterization of the endotoxins from Coxiella burnetii strain Priscilla in relation to their bioactivities. BMC Biochem 5:1 http://www.biomedcentral.com/1471-2091/5/1

    Google Scholar 

  • Toman R, Skultety L, Ihnatko R (2009) Coxiella burnetii glycomics and proteomics – tools for linking structure to function. Ann NY Acad Sci 1166:67–78

    PubMed  CAS  Google Scholar 

  • Trefzer A, Salas JA, Bechthold A (1999) Genes and enzymes involved in deoxysugar biosynthesis in bacteria. Nat Prod Rep 16:283–299

    PubMed  CAS  Google Scholar 

  • Tujulin E, Lilliehook B, Macellaro A et al (1999) Early cytokine induction in mouse P388D1 macrophages infected by Coxiella burnetii. Vet Immunol Immunopathol 68:159–168

    PubMed  CAS  Google Scholar 

  • Ulmer AJ, Heine H, Feist W et al (1992) Biological activity of synthetic phosphono-oxyethyl analogues of lipid A and lipid A partial structures. Infect Immun 60:3309–3314

    PubMed  CAS  Google Scholar 

  • Vadovic P, Slaba K, Fodorova M et al (2005) Structural and functional characterization of the glycan antigens involved in immunobiology of Q fever. Ann NY Acad Sci 1063:149–153

    PubMed  CAS  Google Scholar 

  • Vadovic P, Fodorova M, Toman R (2007) Structural studies of lipid A of Piscirickettisa salmonis, the etiological agent of the salmonid rickettsial septicemia. Acta Virol 51:249–259

    PubMed  CAS  Google Scholar 

  • Vadovic P, Fuleova A, Ihnatko R et al (2009) Structural studies of lipid A from a lipopolysaccharide of the Coxiella burnetii isolate RSA 514 (Crazy). Clin Microbiol Infect 15:198–199

    PubMed  CAS  Google Scholar 

  • Van den Bosch L, Manning PA, Morona R (1997) Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol 23:765–775

    PubMed  Google Scholar 

  • Van der Woude MW, Baumler AJ (2004) Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581–611

    PubMed  Google Scholar 

  • Vishwanath S, Hackstadt T (1988) Lipopolysaccharide phase variation determines the complement-mediated serum susceptibility of Coxiella burnetii. Infect Immun 56:40–44

    PubMed  CAS  Google Scholar 

  • Vodkin MH, Williams JC (1986) Overlapping deletion in two spontaneous phase variants of Coxiella burnetii. J Gen Microbiol 132:2587–2594

    PubMed  CAS  Google Scholar 

  • Wang L, Jensen S, Hallman R et al (1998) Expression of the O antigen gene cluster is regulated by RfaH through the JUMPstart sequence. FEMS Microbiol Lett 165:201–206

    PubMed  CAS  Google Scholar 

  • Weiser JN, Love JM, Moxon ER (1989) The molecular mechanism of phase variation of Haemophilus influenzae lipopolysaccharide. Cell 59:657–665

    PubMed  CAS  Google Scholar 

  • Weisman LS, Ballou CE (1984) Biosynthesis of the mycobacterial methylmannose polysaccharide. Identification of a 3-O-methyltransferase. J Biol Chem 259:3464–3469

    PubMed  CAS  Google Scholar 

  • Weiss J, Hutzler M, Kao L (1986) Environmental modulation of lipopolysaccharide chain length alters the sensitivity of Escherichia coli to the neutrophil bactericidal/permeability-increasing protein. Infect Immun 51:594–599

    PubMed  CAS  Google Scholar 

  • Williams JC, Waag DM (1991) Antigens, virulence factors, and biological response modifiers of Coxiella burnetii: strategies for vaccine development. In: Williams JC, Thompson HA (eds) Q fever: the biology of Coxiella burnetii. CRC Press, Boca Raton, pp 175–222

    Google Scholar 

  • Wollenweber HW, Schramek S, Moll H et al (1985) Nature and linkage of fatty acids present in lipopolysaccharides of phase I and phase II Coxiella burnetii. Arch Microbiol 142:6–11

    PubMed  CAS  Google Scholar 

  • Zamboni DS, Campos MA, Torrecilhas ACT et al (2004) Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J Biol Chem 279:54405–54415

    PubMed  CAS  Google Scholar 

  • Zhang G, Russell-Lodrigue KE, Andoh M et al (2007) Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J Immunol 179:8372–8380

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported in part by the grant 2/0026/12 from the Scientific Grant Agency of Ministry of Education of Slovak Republic and the Slovak Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Toman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Narasaki, C.T., Toman, R. (2012). Lipopolysaccharide of Coxiella burnetii . In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_4

Download citation

Publish with us

Policies and ethics