Skip to main content

Mobilization of Pluripotent Stem Cells in Patients with Myocardial Ischemia: From the Bench to Bedside

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 7

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 7))

  • 1112 Accesses

Abstract

Acute myocardial infarction and the following ischemic heart disease remain a major cause of mortality and morbidity in the western world. Despite the advances in pharmacological and reperfusion therapies, replacing the infarcted myocardial tissue remain illusive to scientist and clinicians alike. Adult bone marrow harbors a multitude of hematopoietic and non-hematopoietic stem cells including a small subset of primitive cells such as very small embryonic like stem cells (VSELs) that carry a number of features resembling embryonic stem cells. Myocardial ischemia initiates multiple innate mechanisms that culminate in the mobilization of bone marrow-derived cells including differentiated lineage as well as undifferentiated stem cells. While the numbers of stem cells carrying pluripotent features among the mobilized stem cells is small, their differentiation and regeneration capacity appear immense. Future therapies aiming at selective mobilization of the pluripotent and primitive subsets of bone marrow-derived cells during myocardial ischemia are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Latif A, Bolli R, Tleyjeh I, Montori V, Perin E, Hornung C, Zuba-Surma E, Al-Mallah M, Dawn B (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Article  PubMed  Google Scholar 

  • Abdel-Latif A, Zuba-Surma EK, Case J, Tiwari S, Hunt G, Ranjan S, Vincent RJ, Srour EF, Bolli R, Dawn B (2008a) TGF-beta1 enhances cardiomyogenic differentiation of skeletal muscle-derived adult primitive cells. Basic Res Cardiol 103:514–524

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Latif A, Bolli R, Zuba-Surma EK, Tleyjeh IM, Hornung CA, Dawn B (2008b) Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J 156:216–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abdel-Latif A, Zuba-Surma EK, Ziada KM, Kucia M, Cohen DA, Kaplan AM, Van Zant G, Selim S, Smyth SS, Ratajczak MZ (2010) Evidence of mobilization of pluripotent stem cells into peripheral blood of patients with myocardial ischemia. Exp Hematol 38:1131–1142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Agarwal U, Ghalayini W, Dong F, Weber K, Zou YR, Rabbany SY, Rafii S, Penn MS (2010) Role of cardiac myocyte CXCR4 expression in development and left ventricular remodeling after acute myocardial infarction. Circ Res 107:667–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, Janowska-Wieczorek A, Ratajczak MZ (2002) Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 30:450–459

    Article  CAS  PubMed  Google Scholar 

  • Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, Van Haute I, Lootens N, Heyndrickx G, Wijns W (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 112:I178–I183

    PubMed  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen SL, Fang WW, Qian J, Ye F, Liu YH, Shan SJ, Zhang JJ, Lin S, Liao LM, Zhao RC (2004) Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl) 117:1443–1448

    Google Scholar 

  • Dawn B, Tiwari S, Kucia MJ, Zuba-Surma EK, Guo Y, Sanganalmath SK, Abdel-Latif A, Hunt G, Vincent RJ, Taher H, Reed NJ, Ratajczak MZ, Bolli R (2008) Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells 26:1646–1655

    Article  PubMed Central  PubMed  Google Scholar 

  • Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM (2003) Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107:1247–1249

    Article  PubMed  Google Scholar 

  • Drukala J, Paczkowska E, Kucia M, Mlynska E, Krajewski A, Machalinski B, Madeja Z, Ratajczak MZ (2011) Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev 8(1):184–194

    Article  Google Scholar 

  • Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  CAS  PubMed  Google Scholar 

  • Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16:1992–2003

    Article  CAS  PubMed  Google Scholar 

  • Loffredo FS, Steinhauser ML, Gannon J, Lee RT (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398

    Article  CAS  PubMed  Google Scholar 

  • Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V, Durgin M, Poh KK, Weinstein R, Kearney M, Chaudhry M, Burg A, Eaton L, Heyd L, Thorne T, Shturman L, Hoffmeister P, Story K, Zak V, Dowling D, Traverse JH, Olson RE, Flanagan J, Sodano D, Murayama T, Kawamoto A, Kusano KF, Wollins J, Welt F, Shah P, Soukas P, Asahara T, Henry TD (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115:3165–3172

    Article  PubMed  Google Scholar 

  • Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, Gewirtz AM, Emerson SG, Ratajczak MZ (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hemato-poiesis in an autocrine/paracrine manner. Blood 97:3075–3085

    Article  CAS  PubMed  Google Scholar 

  • McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, Overall CM (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276:43503–43508

    Article  CAS  PubMed  Google Scholar 

  • Paczkowska E, Larysz B, Rzeuski R, Karbicka A, Jałowiński R, Kornacewicz-Jach Z, Ratajczak M, Machaliński B (2005) Human hematopoietic stem/progenitor-enriched CD34(+) cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction. Eur J Haematol 75:461–467

    Article  CAS  PubMed  Google Scholar 

  • Peterson JT, Li H, Dillon L, Bryant JW (2000) Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res 46:307–315

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak MZ, Zuba-Surma EK, Shin DM, Ratajczak J, Kucia M (2008) Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp Gerontol 43:1009–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ, Kucia M, Janowska-Wieczorek A, Ratajczak J (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24:976–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, Agarwal H, Perlman H, Qin G, Kishore R, Losordo DW (2011) Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity. Circ Res 109:724–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schächinger V, Erbs S, Elsasser A, Haberbosch W, Hambrescht R, Holschermann H, Yu J, Corti R, Mathey D, Hamm C, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial in acute myocardial Infarction. N Engl J Med 355:1210–1221

    Article  PubMed  Google Scholar 

  • Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779

    Article  CAS  PubMed  Google Scholar 

  • Strauer BE, Yousef M, Schannwell CM (2010) The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail 12:721–729

    Article  PubMed  Google Scholar 

  • Valgimigli M, Rigolin G, Fucili A, Porta M, Soukhomo-vskaia O, Malagutti P, Bugli A, Bragotti L, Francolini G, Mauro E, Castoldi G, Ferrari R (2004) CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 110:1209–1212

    Article  CAS  PubMed  Google Scholar 

  • Wojakowski W, Tendera M, Zebzda A, Michalowska A, Majka M, Kucia M, Maslankiewicz K, Wyderka R, Król M, Ochala A, Kozakiewicz K, Ratajczak M (2006) Mobilization of CD34(+), CD117(+), CXCR4(+), c-met(+) stem cells is correlated with left ventricular ejection fraction and plasma NT-proBNP levels in patients with acute myocardial infarction. Eur Heart J 27:283–289

    Article  CAS  PubMed  Google Scholar 

  • Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J, Halasa M, Krol M, Kazmierski M, Buszman P, Ochala A, Ratajczak J, Machalinski B, Ratajczak MZ (2009) Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zohlnhöfer D, Ott I, Mehilli J, Schömig K, Michalk F, Ibrahim T, Meisetschläger G, von Wedel J, Bollwein H, Seyfarth M, Dirschinger J, Schmitt C, Schwaiger M, Kastrati A, Schömig A, Investigators R (2006) Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 295:1003–1010

    Article  PubMed  Google Scholar 

  • Zuba-Surma EK, Abdel-Latif A, Case J, Tiwari S, Hunt G, Kucia M, Vincent RJ, Ranjan S, Ratajczak MZ, Srour EF, Bolli R, Dawn B (2006) Sca-1 expression is associated with decreased cardiomyogenic differentiation potential of skeletal muscle-derived adult primitive cells. J Mol Cell Cardiol 41:650–660

    Article  CAS  PubMed  Google Scholar 

  • Zuba-Surma EK, Kucia M, Abdel-Latif A, Dawn B, Hall B, Singh R, Lillard JW Jr, Ratajczak MZ (2008) Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. J Cell Mol Med 12:292–303

    Article  PubMed  Google Scholar 

  • Zuba-Surma EK, Guo Y, Taher H, Sanganalmath SK, Hunt G, Vincent RJ, Kucia M, Abdel-Latif A, Tang XL, Ratajczak MZ, Dawn B, Bolli R (2011) Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. J Cell Mol Med 15:1319–1328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Abdel-Latif is supported by the University of Kentucky Clinical and Translational Science Pilot Award and the University of Kentucky Clinical Scholar program.

Dr. Zuba-Surma is supported by the “Polish Foundation of Science” homing program grant number 2008/15.

Dr. Ratajczak is supported by NIH grant R01 CA106281, NIH R01 DK074720, and Stella and Henry Endowment.

We thank Dr. Karapetyan for her technical support.

Conflict of interest: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdel-Latif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abdel-Latif, A., Zuba-Surma, E.K., Ratajczak, M.Z. (2012). Mobilization of Pluripotent Stem Cells in Patients with Myocardial Ischemia: From the Bench to Bedside. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 7. Stem Cells and Cancer Stem Cells, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4285-7_6

Download citation

Publish with us

Policies and ethics