Skip to main content

Environmental Degradation of Carbon Nanotube Hybrid Aerospace Composites

  • Chapter
  • First Online:
Carbon Nanotube Enhanced Aerospace Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 188))

Abstract

This chapter focuses on the environmental response of carbon fibre-reinforced epoxy composites, where the matrix has been modified with carbon nanotubes. These newly developed hybrid aerospace systems have been recently introduced as alternatives to conventional high performance polymer composites due to their improved mechanical properties, toughness and damage sensing abilities as discussed in detail in previous chapters. First an attempt is made to outline the conditions that lead to environmental degradation specifically in aerospace environments. Next to that the response of typical aerospace composites to these environments is discussed. Following, the benefits and challenges in using hybrid aerospace composites in in-service conditions is presented. The degradation of hybrid composites due to exposure on hydro/hygrothermal loadings and galvanic corrosion is presented based on preliminary results. In this section, the focus is on epoxy based composites reinforced with carbon fibres. Matrix modification of these systems is provided by the addition of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apicella, A., Nicolais, L.: Role of processing on the durability of epoxy composites in humid environments. Ind. Eng. Chem. Prod. Res. Dev. 23, 288–297 (1984). doi:10.1021/i300014a024

    Google Scholar 

  • Apicella, A., Nicolais, L.: Network structure and plasticization of epoxy-based resins. Makromol. Chem. Macromol. Symp. 7, 97–113 (1987). doi:10.1002/masy.19870070111

    Google Scholar 

  • Asp, L.E.: The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. Compos. Sci. Technol. 58, 967–977 (1998). doi:10.1016/S0266-3538(97)00222-4

    Google Scholar 

  • Baker, A.A.: Joining and repair of aircraft composite structures. In: Mallick, P.K. (ed.) Composite Engineering Handbook. Marcel Dekker, New York (1997)

    Google Scholar 

  • Baker, A.A.: Bonded composite repair of fatigue-cracked primary aircraft structure. Compos. Struct. 47, 431–443 (1999). doi:10.1016/S0263-8223(00)00011-8

    Google Scholar 

  • Bank, L.C., Gentry, T.R., Barkatt, A.: Accelerated test methods to determine the long-term behavior of FRP composite structures: environmental effects. J. Reinf. Plast. Compos. 14, 559–587 (1995). doi:10.1177/073168449501400602

    Google Scholar 

  • Barkoula, N.M., Paipetis, A., Matikas, T., Vavouliotis, A., Karapappas, P., Kostopoulos, V.: Environmental degradation of carbon nanotube modified carbon fibre reinforced laminates: an electrical resistivity study. Mech. Compos. Mater. 45, 21–32 (2009). doi:10.1007/s11029-009-9059-8

    Google Scholar 

  • Barkoula, N.M., Gkikas, G., Makri, A., Matikas, T.E., Paipetis, A.: Effect of the environmental degradation on the viscoelastic response of nano modified epoxies and CTRPs. In: Proceedings of the 14th European Conference on Composite Materials (ECCM14), Budapest, Hungary. Paper ID: 045-ECCM14 (2010)

    Google Scholar 

  • Bellenger, V., Verdu, J.: Photooxidation of amine crosslinked epoxies II. Influence of structure. J. Appl. Polym. Sci. 28, 2677–2688 (1983). doi:10.1002/app. 1983.070280901

    Google Scholar 

  • Bellenger, V., Verdu, J.: Oxidative skeleton breaking in epoxy–amine networks. J. Appl. Polym. Sci. 30, 363–374 (1985). doi:10.1002/app. 1985.070300132

    Google Scholar 

  • Bierwagen, G.P., Tallman, D.E.: Choice and measurement of crucial aerospace coating system properties. Prog. Org. Coat. 41, 201–217 (2001). doi:10.1016/S0300-9440(01)00131-X

    Google Scholar 

  • Bierwagen, G., Battocchi, D., Simoes, A., Stamness, A., Tallman, D.: The use of multiple electrochemical techniques to characterize Mg-rich primers for Al alloys. Prog. Org. Coat. 59, 172–178 (2007). doi:10.1016/j.porgcoat.2007.01.022

    Google Scholar 

  • Bockenheimer, C., Fata, D., Possart, W.: New aspects of aging in epoxy networks. II. Hydrothermal aging. J. Appl. Polym. Sci. 91, 369–377 (2004). doi:10.1002/app. 13093

    Google Scholar 

  • Bondzic, S., Hodgkin, J., Krstina, J., Mardel, J.: Chemistry of thermal ageing in aerospace epoxy composites. J. Appl. Polym. Sci. 100, 2210–2219 (2006). doi:10.1002/app. 23692

    Google Scholar 

  • Botelho, E.C., Pardini, L.C., Rezende, M.C.: Hygrothermal effects on the shear properties of carbon fibre/epoxy composites. J. Mater. Sci. 41, 7111–7118 (2006a). doi:10.1007/s10853-006-0933-7

    Google Scholar 

  • Botelho, E.C., Pardini, L.C., Rezende, M.C.: Damping behavior of hygrothermally conditioned carbon fibre/epoxy laminates. J. Appl. Polym. Sci. 106, 3143–3148 (2006b)

    Google Scholar 

  • Bowles, K.J., Jayne, D., Leonhardt, T.A.: Isothermal aging effects on PMR-15 resin. SAMPE Q. 24, 2–9 (1993)

    Google Scholar 

  • Bowles, K.J., McCorkle, L., Ingram, L.: Comparison of graphite fabric reinforced PMR-15 and Avimid N composites after long-term isothermal aging at various temperatures. J. Adv. Mater. 30, 27–35 (1998)

    Google Scholar 

  • Buchheit, R.G.: Compilation of corrosion potentials reported for intermetallicphases in aluminum alloys. J. Electrochem. Soc. 142, 3994–3996 (1995)

    Google Scholar 

  • Buchheit, R.G., Grant, R.P., Hlava, P.F., McKenzie, B., Zender, G.L.: Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J. Electrochem. Soc. 144, 2621–2628 (1997)

    Google Scholar 

  • Buehler, F.U., Seferis, J.C.: Effect of reinforcement and solvent content on moisture absorption in epoxy composite materials. Compos. Part A-Appl. Sci. Manuf. 31, 741–748 (2000). doi:10.1016/S1359-835X(00)00036-1

    Google Scholar 

  • Chae, H.G., Minus, M.L., Kumar, S.: Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile. Polymer 47, 3494–3504 (2006). doi:10.1016/j.polymer.2006.03.050

    Google Scholar 

  • Chen, W., Lu, H., Nutt, S.R.: The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites. Compos. Sci. Technol. 68, 2535–2542 (2008). doi:10.1016/j.compscitech.2008.05.011

    Google Scholar 

  • Chin, J.W., Nguyen, T., Aouadi, K.: Effects of environmental exposure on Fibre-Reinforced Plastic (FRP) materials used in construction. JCTR 19, 205–213 (1997)

    Google Scholar 

  • Chou, P.J.C., Ding, D.J.: Characterization of moisture absorption and its Influence on composite structures. J. Thermoplast. Compos. 13, 207–225 (2000). doi:10.1177/089270570001300303

    Google Scholar 

  • Chow, W.S.: Water absorption of epoxy/glass fibre/organo-montmorillonite nanocomposites. Express Polym. Lett. 1, 104–108 (2007). doi:10.3144/expresspolymlett.2007.18

    Google Scholar 

  • Clark, G., Saunders, D.S., van Blaricum, T.J., Richmond, M.: Moisture absorption in graphite/epoxy laminates. Compos. Sci. Technol. 39, 355–375 (1990). doi:10.1016/0266-3538(90)90081-F

    Google Scholar 

  • Colin, X., Marais, C., Verdu, J.: Thermal oxidation kinetics for a poly(bismaleimide). J. Appl. Polym. Sci. 82, 3418–3430 (2001). doi:10.1002/app. 2203

    Google Scholar 

  • Collings, T.A., Stone, D.E.W.: Hygrothermal effects in CFC laminates: damaging effects of temperature, moisture and thermal spiking. Compos. Struct. 3, 341–378 (1985). doi:10.1016/0263-8223(85)90061-3

    Google Scholar 

  • Dao, B., Hodgkin, J., Krstina, J., Mardel, J., Tian, W.: Accelerated aging versus realistic aging in aerospace composite materials. J. Appl. Polym. Sci. 102, 4291–4303 (2006a). doi:10.1002/app. 24862

    Google Scholar 

  • Dao, B., Hodgkin, J., Krstina, J., Mardel, J., Tian, W.: Accelerated aging versus realistic aging in aerospace composite materials. II. Chemistry of thermal aging in a structural composite. J. Appl. Polym. Sci. 102, 3221–3232 (2006b). doi:10.1002/app. 24573

    Google Scholar 

  • Dao, B., Hodgkin, J., Krstina, J., Mardel, J., Tian, W.: Accelerated ageing versus realistic ageing in aerospace composite materials. III. The chemistry of thermal ageing in bismaleimide based composites. J. Appl. Polym. Sci. 105, 2062–2072 (2007a). doi:10.1002/app. 26320

    Google Scholar 

  • Dao, B., Hodgkin, J.H., Krstina, J., Mardel, J., Tian, W.: Accelerated ageing versus realistic ageing in aerospace composite materials. IV. Hot/wet ageing effects in a low temperature cure epoxy composite. J. Appl. Polym. Sci. 106, 4264–4276 (2007b). doi:10.1002/app. 27104

    Google Scholar 

  • Delozier, D.M., Watson, K.A., Smith, J.G., Connell, J.W.: Preparation and characterization of space durable polymer nanocomposite films. Compos. Sci. Technol. 65, 749–755 (2004). doi:10.1016/j.compscitech.2004.10.026

    Google Scholar 

  • Dyakonov, T., Mann, P.J., Chen, Y., Stevenson, W.T.K.: Thermal analysis of some aromatic amine cured model epoxy resin systems–II: residues of degradation. Polym. Degrad. Stabil. 54, 67–83 (1996). doi:10.1016/0141-3910(96)00096-1

    Google Scholar 

  • Fidelusa, J.D., Wiesela, E., Gojny, F.H., Schulte, K., Wagnera, H.D.: Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos. Part A 36, 1555–1561 (2005). doi:10.1016/j.compositesa.2005.02.006

    Google Scholar 

  • Fox, B.L., Lowe, A., Hodgkin, J.H.: Investigation of failure mechanisms in aged aerospace composites. Eng. Fail. Anal. 11, 235–241 (2004). doi:10.1016/j.engfailanal.2003.05.010

    Google Scholar 

  • Frassine, R., Pavan, A.: The combined effects of curing and environmental exposure on fracture properties of woven carbon/epoxy laminates. Compos. Sci. Technol. 51, 495–503 (1994). doi:10.1016/0266-3538(94)90082-5

    Google Scholar 

  • Garton, A.: Infrared spectroscopic characterization of epoxy matrix composites. J. Macromol. Sci. Part A-Pure Appl. Chem. 26, 17–41 (1989)

    Google Scholar 

  • Gkikas, G., Paipetis, A., Barkoula, N.M., Lekatou, A., Sioulas, D.: Enhanced bonded aircraft repair using nano-modified adhesives. In: Proceedings of the 14th European Conference on Composite Materials (ECCM14), Budapest, Hungary. Paper ID: 660-ECCM14 (2010)

    Google Scholar 

  • Gojny, F.H., Schulte, K.: Functionalisation effect on the thermo-mechanical behavior of multiwall carbon nanotube/epoxy composite. Compos. Sci. Technol. 64, 2303–2308 (2004). doi:10.1016/j.compscitech.2004.01.024

    Google Scholar 

  • Grenier-Loustalot, M.F., Metras, F., Grenier, P., Chenard, J.Y., Horny, P.: Mecanismes reactionnels, cinetique et structure du reseau de systemes thermodurcissables type TGDDM-DDS. Eur. Polym. J. 26, 83–100 (1990). doi:10.1016/0014-3057(90)90102-A

    Google Scholar 

  • Hancox, N.L.: Overview of effects of temperature and environment on performance of polymer matrix composite properties. Plast. Rubber Compos. Process Appl. 27, 97–105 (1998)

    Google Scholar 

  • Harmon, J.P., Muisener, P.A.O., Clayton, L., D’Angelo, J., Sikder, A.K., Kumar, A., et al.: Ionizing radiation effects on interfaces in carbon nanotube-polymer composites. Mater. Res. Soc. Symp. Proc. 697, 425–435 (2002)

    Google Scholar 

  • Hatakeyama, T., Quinn, F.: Thermal Analysis: Fundamentals and Application to Polymer Science, 2nd edn. Wiley, Chichester (1999)

    Google Scholar 

  • Hough, J.A., Xiang, Z.D., Jones, F.R.: The effect of thermal spiking and resultant enhanced moisture absorption on the mechanical and viscoelastic properties of carbon fibre reinforced epoxy laminates. Key Eng. Mater. 144, 27–42 (1998). doi:10.4028/www.scientific.net/KEM.144.27

    Google Scholar 

  • Hwang, T., Pu, L., Kim, S.W., Oh, Y.S., Nam, J.D.: Synthesis and barrier properties of poly(vinylidene chloride-co-acrylonitrile)/SiO2 hybrid composites by sol-gel process. J. Membr. Sci. 345, 90–96 (2009). doi:10.1016/j.memsci.2009.08.029

    Google Scholar 

  • Ilevbare, G.O., Scully, J.R., Yuan, J., Kelly, R.G.: Inhibition of pitting corrosion on aluminum alloy 2024-T3: effect of soluble chromate additions vs. chromate conversion coating. Corrosion 56, 227–242 (2000)

    Google Scholar 

  • Ivanova, K.I., Pethrick, R.A., Affrossman, S.: Hygrothermal aging of rubber-modified and mineral-filled dicyandiamide-cured DGEBA epoxy resin. II. Dynamic mechanical thermal analysis. J. Appl. Polym. Sci. 82, 3477–3485 (2001). doi:10.1002/app. 2209

    Google Scholar 

  • Jedidi, J., Jacquemin, F., Vautrin, A.: Design of accelerated hygrothermal cycles on polymer matrix composites in the case of a supersonic aircraft. Compos. Struct. 68, 429–437 (2005). doi:10.1016/j.compstruct.2004.04.009

    Google Scholar 

  • Jedidi, J., Jacquemin, F., Vautrin, A.: Accelerated hygrothermal cyclical tests for carbon/epoxy laminates. Compos. Part A-Appl. Sci. Manuf. 37, 636–645 (2006). doi:10.1016/j.compositesa.2005.05.007

    Google Scholar 

  • Jelinski, L.W., Dumais, J.J., Cholli, A.L., Ellis, T.S., Karasz, F.E.: Nature of the water-epoxy interaction. Macromolecules 18, 1091–1095 (1985). doi:10.1021/ma00148a008

    Google Scholar 

  • Joshi, K.M.: The effect of moisture on the shear properties of carbon fibre composites. Composites 14, 196–200 (1983). doi:10.1016/0010-4361(83)90005-8

    Google Scholar 

  • Kenig, S., Moshonov, A., Shucrun, A., Maron, G.: Environmental effects on shear delamination of fabric-reinforced epoxy composites. Int. J. Adhes. Adhes. 9, 38–45 (1989). doi:10.1016/0143-7496(89)90145-0

    Google Scholar 

  • Kerr, J.R., Haskins, J.F.: Time-Temperature-Stress Capabilities of Composite Materials for Advanced Supersonic Technology Application. NASA CR-178272 (1987)

    Google Scholar 

  • Kim, J.K., Hu, C., Woo, R.S.C., Sham, M.L.: Moisture barrier characteristics of organoclay-epoxy nanocomposites. Compos. Sci. Technol. 65, 805–813 (2005). doi:10.1016/j.compscitech.2004.10.014

    Google Scholar 

  • Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O.: Sorption of water in nylon 6-clay hybrid. J. Appl. Polym. Sci. 49, 1259–1264 (1993). doi:10.1002/app. 1993.070490715

    Google Scholar 

  • Kostopoulos, V., Tsotra, P., Karapappas, P., Tsantzalis, S., Vavouliotis, A., Loutas, T.H., Paipetis, A., Friedrich, K., Tanimoto, T.: Mode I interlaminar fracture of CNF or/and PZT doped CFRPs via acoustic emission monitoring. Compos. Sci. Technol. 67, 822–828 (2007). doi:10.1016/j.compscitech.2006.02.038

    Google Scholar 

  • Kumar, B.G., Singh, R.P., Nakamura, T.: Degradation of carbon fibre-reinforced epoxy composites by ultraviolet radiation and condensation. J. Compos. Mater. 36, 2713–2733 (2002). doi:10.1177/002199802761675511

    Google Scholar 

  • Lai, J.Y., Young, K.F.: Dynamics of graphite/epoxy composite under delamination fracture and environmental effects. Compos. Struct. 30, 25–32 (1995). doi:10.1016/0263-8223(94)00017-4

    Google Scholar 

  • Li, G., Lee-Sullivan, P., Thring, R.: Determination of activation energy for glass transition of an epoxy adhesive using dynamic mechanical analysis. J. Therm. Anal. Calorim. 60, 377–390 (2000). doi:10.1023/A:1010120921582

    Google Scholar 

  • Li, Y., Miranda, J., Sue, H.J.: Hygrothermal diffusion behavior in bismaleimide resin. Polymer 42, 7791–7799 (2001). doi:10.1016/S0032-3861(01)00241-5

    Google Scholar 

  • Li, X., Gao, H., Scrivens, W.A., Fei, D., Xu, X., Sutton, M.A., Reynolds, A.P., Myrick, M.L.: Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15, 1416–1423 (2004). doi:10.1088/0957-4484/15/11/005

    Google Scholar 

  • Liau, W.B., Tseng, F.P.: The effect of long-term ultraviolet light irradiation on polymer matrix composites. Polym. Compos. 19, 440–445 (1998). doi:10.1002/pc.10118

    Google Scholar 

  • Lin, Y.C.J.: Investigation of the moisture-desorption characteristics of epoxy resin. Polym. Res. 13, 369–374 (2006). doi:10.1007/s10965-006-9053-y

    Google Scholar 

  • Liu, M., Wu, P., Ding, Y., Chen, G., Li, S.: Two-dimensional (2D) ATR−FTIR spectroscopic study on water diffusion in cured epoxy resins. Macromolecules 35, 5500–5507 (2002). doi:10.1021/ma011819f

    Google Scholar 

  • Luoma, G.A., Rowland, R.D.: Environmental degradation of an epoxy resin matrix. J. Appl. Polym. Sci. 32, 5777–5790 (1986). doi:10.1002/app. 1986.070320710

    Google Scholar 

  • Maggana, C., Pissis, P.: Water sorption and diffusion studies in an epoxy resin system. J. Polym. Sci. Part B-Polym. Phys. 37, 1165–1182 (1999). doi:10.1002/(SICI)1099-0488(19990601)37:11<1165::AID-POLB11>3.0.CO;2-E

    Google Scholar 

  • Mahieux, C.A.: Environmental Degradation in Industrial Composites. Elsevier, Oxford (2006)

    Google Scholar 

  • Mangalgiri, P.D.: Composite materials for aerospace applications. Bull. Mater. Sci. 22, 657–664 (1999). doi:10.1007/BF02749982

    Google Scholar 

  • Matzkanin, G.A., Hansen, G.P.: Heat Damage in Graphite Epoxy Composites: Degradation, Measurement and Detection: A State-of-the-Art Report. NTIAC-SR-98-02 (1998)

    Google Scholar 

  • McKague, E.L., Halkias, J.E., Reynolds, J.D.: Moisture in composites: the effect of supersonic service on diffusion. J. Compos. Mater. 9, 2–9 (1975). doi:10.1177/002199837500900101

    Google Scholar 

  • Merdas, I., Thominette, F., Tcharkhtchi, A., Verdu, J.: Factors governing water absorption by composite matrices. J. Compos. Sci. Technol. 62, 487–492 (2002). doi:10.1016/S0266-3538(01)00138-5

    Google Scholar 

  • Minus, M.L., Chae, H.G., Kumar, S.: Single wall carbon nanotube templated oriented crystallization of poly(vinyl alcohol). Polymer 47, 3705–3710 (2006). doi:10.1016/j.polymer.2006.03.076

    Google Scholar 

  • Mitchell, C.A., Bahar, J.L., Arepalli, S.: Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35, 8825–8830 (2002). doi:10.1021/ma020890y

    Google Scholar 

  • Miyagawa, H., Rich, M.J., Drzal, L.T.: Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibres. Thermochim. Acta 442, 67–73 (2006). doi:10.1016/j.tca.2006.01.016

    Google Scholar 

  • Mohd Ishak, Z., Ariffin, A., Senawi, R.: Effects of hygrothermal aging and a silane coupling agent on the tensile properties of injection molded short glass fibre reinforced poly(butylene terephthalate) composites. Eur. Polym. J. 37, 1635–1647 (2001). doi:10.1016/S0014-3057(01)00033-7

    Google Scholar 

  • Montazeri, A., Montazeri, N.: Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content. Mater. Des. 32, 2301–2307 (2011). doi:10.1016/j.matdes.2010.11.003

    Google Scholar 

  • Montazeri, A., Khavandi, A., Javadpour, J., Tcharkhtchi, A.: Viscoelastic properties of multi-walled carbon nanotube/epoxy composites using two different curing cycles. J. Nano Res. 13, 33–39 (2011). doi:10.4028/www.scientific.net/JNanoR.13.33

    Google Scholar 

  • Morgan, R.J., Mones, E.T.: The cure reactions, network structure, and mechanical response of diaminodiphenyl sulfone-cured tetraglycidyl 4,4′ diaminodiphenyl methane epoxies. J. Appl. Polym. Sci. 33, 999–1020 (1987). doi:10.1002/app. 1987.070330401

    Google Scholar 

  • Morgan, R.J., O’neal, J.E.: The durability of epoxies. Polym. Plast. Tech. Eng. 10, 49–116 (1978). doi:10.1080/03602557808055845

    Google Scholar 

  • Morgan, R.J., Shin, E.E., Lincoln, J.: Thermal properties of high temperature polymer matrix fibrous composites. In: Cheng, S.Z.D. (ed.) Handbook of Thermal Analysis and Calorimetry, Elsevier Science BV, Amsterdam (2002). doi: 10.1016/S1573-4374(02)80015-2

  • Muisener, P.A.O., Clayton, L., D’Angelo, J., Harmon, J.P., Sikder, A.K., Kumar, A., et al.: Effects of gamma radiation on poly(methyl methacrylate)/single-wall nanotube composites. J. Mater. Res. 17, 2507–2513 (2002). doi:10.1017/S0884291400061914

    Google Scholar 

  • Musto, P., Ragosta, G., Mascia, L.: Vibrational spectroscopy evidence for the dual nature of water sorbed into epoxy resins. Chem. Mater. 12, 1331–1341 (2000). doi:10.1021/cm9906809

    Google Scholar 

  • Musto, P., Ragosta, G., Russo, P., Mascia, L.: Thermal-oxidative degradation of epoxy and epoxy-bismaleimide networks: kinetics and mechanism. Macromol. Chem. Phys. 202, 3445–3458 (2001). doi:10.1002/1521-3935(20011201)202:18<3445::AID-MACP3445>3.0.CO;2-N

    Google Scholar 

  • Musto, P., Ragosta, G., Scarinzi, G., Mascia, L.: Probing the molecular interactions in the diffusion of water through epoxy and epoxy–bismaleimide networks. Polym. Sci. Part B: Polym. Phys. 40, 922–938 (2002). doi:10.1002/polb.10147

    Google Scholar 

  • Najafi, E., Shin, K.: Radiation resistant polymer-carbon nanotube nanocomposite thin films. Colloid Surf. A 257, 333–337 (2005). doi:10.1016/j.colsurfa.2004.10.076

    Google Scholar 

  • Najafi, E., Lee, J.O., Shin, K.: Materials for space applications. Mater. Res. Soc. Symp. Proc. 851, 279–285 (2005)

    Google Scholar 

  • Nam, J.D., Seferis, J.C.: Anisotropic thermo-oxidative stability of carbon fibre reinforced polymeric composites. J. C. SAMPE. Q. 24, 10–18 (1992)

    Google Scholar 

  • Ngono, Y., Marechal, Y., Mermilliod, N.: Epoxy–amine reticulates observed by infrared spectrometry. I: hydration process and interaction configurations of embedded H2O molecules. J. Phys. Chem. B 103, 4979–4985 (1999). doi:10.1021/jp984809y

    Google Scholar 

  • Nielsen, K.L.C., Hill, D.J.T., Watson, K.A., Connell, J.W., Ikeda, S., Kudo, H., Whittaker, A.K.: The radiation degradation of a nanotube-polimide nanocomposite. Polym. Degrad. Stabil. 93, 169–175 (2008). doi:10.1016/j.polymdegradstab.2007.10.010

    Google Scholar 

  • Nogueira, P., Ramírez, C., Torres, A., Abad, M.J., Cano, J., López, J., López-Bueno, I., Barral, L.: Effect of water sorption on the structure and mechanical properties of an epoxy resin system. J. Appl. Polym. Sci. 80, 71–80 (2001). doi:10.1002/1097-4628(20010404)80:1<71::AID-APP1077>3.0.CO;2-H

    Google Scholar 

  • Ogi, K., Takeda, N.: Effect of moisture content on non-linear deformation behaviour of CF/epoxy composites. J. Compos. Mater. 31, 530–551 (1997). doi:10.1177/002199839703100601

    Google Scholar 

  • Papanicolaou, G.C., Kosmidou, T., Vatalis, A.S., Delides, C.G.: Water absorption mechanism and some anomalous effects on the mechanical and viscoelastic behavior of an epoxy system. J. Appl. Polym. Sci. 99, 1328–1339 (2006). doi:10.1002/app. 22095

    Google Scholar 

  • Patel, S.R., Case, S.W.: Durability of hygrothermally aged graphite/epoxy woven composite under combined hygrothermal conditions. Int. J. Fatig. 24, 1295–1301 (2002). doi:10.1016/S0142-1123(02)00044-0

    Google Scholar 

  • Pearce, P.J., Davidson, R.G., Morris, C.E.M.: Hydrolytic stability of some uncured epoxy resins. J. Appl. Polym. Sci. 26, 2363–2372 (1981). doi:10.1002/app. 1981.070260722

    Google Scholar 

  • Prolongo, S.G., Gude, M.R., Urena, A.: Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment. Compos. Sci. Technol. 71, 765–771 (2011). doi:10.1016/j.compscitech.2011.01.028

    Google Scholar 

  • Pulikkathara, M.X., Shofner, M.L., Wilkins, R., Vera, J.G., Barrera, E.V., Rodriguez-Macias, F.J., Vaidyanathan, R.K., Green, C.E., Condon, C.G.: Fluorinated single wall nanotube/polyethylene composites for multifunctional radiation protection. Nanomater. Struct. Appl. 740, 365–370 (2003)

    Google Scholar 

  • Pulikkathara, M.X., Pena-Paras, L., McIntosh, D., Chipara, M., Wilkins, R., Barrera, E.V., Dye, D., Zaleski, J.M.: Proton beam induced modifications in multi-functional polyethylene-based carbon nanotube composites. Mater. Res. Soc. Symp. Proc. 851, 261–266 (2005)

    Google Scholar 

  • Qu, L.W., Lin, Y., Hill, D.E., Zhou, B., Wang, W., Sun, X.F., et al.: Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films. Macromolecules 376055–6060 (2004). doi:10.1021/ma0491006

  • Ramanathan, T., Liu, H., Brinson, L.C.: Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci. Part B: Polym. Phys. 43, 2269–2279 (2005). doi:10.1002/polb.20510

    Google Scholar 

  • Ranby, B., Rabek, J.: Photodegradation, Photo-Oxidation and Photostabilization of Polymers. Wiley, London (1975)

    Google Scholar 

  • Ray, B.C.: Temperature effect during humid ageing on interfaces of glass and carbon fibres reinforced epoxy composites. J. Colloid Interface Sci. 298, 111–117 (2006). doi:10.1016/j.jcis.2005.12.023

    Google Scholar 

  • Reynolds, T.G., Mc Manus, H.L.: Accelerated tests of environmental degradation in composite materials. In: Grant, P., Rousseau, C.Q. (eds.) Composite Structures: Theory and Practice, ASTM STP 1383:513–525. American Society for Testing and Materials, West Conshohocken (2000)

    Google Scholar 

  • Reynolds, L.B., Twite, R., Donley, M.S., Bierwagen, G.P., Khobaib, M.: Preliminary evaluation of the anticorrosive properties for aircraft coatings by electrochemical methods. Prog. Org. Coat. 32, 31–34 (1997). doi:10.1016/S0300-9440(97)00098-2

    Google Scholar 

  • Schoeppner, G., Tandon, G., Pochiraju, K.: Predicting thermooxidative degradation and performance of high-temperature polymer matrix composites. In: Talreja, R. (ed.) Multiscale Modeling and Simulation of Composite Materials and Structures, Springer, New York (2008). doi: 10.1007/978-0-387-68556-4_9

  • Selzer, R., Friedrich, K.: Influence of water up-take on interlaminar fracture properties of carbon fibre-reinforced polymer composites. J. Mater. Sci. 30, 334–338 (1995). doi:10.1007/BF00354392

    Google Scholar 

  • Seyhan, A.T., Gojny, F.H., Tanoglu, M., Schulte, K.: Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester–polyester suspensions and their nanocomposites. Eur. Polym. J. 43, 2836–2847 (2007). doi:10.1016/j.eurpolymj.2007.04.022

    Google Scholar 

  • Shen, C., Springer, G.S.: Moisture absorption and desorption of composite materials. J. Compos. Mater. 10, 2–20 (1976). doi:10.1177/002199837601000101

    Google Scholar 

  • Shen, J.F., Huang, W.S., Wu, L.P., Hu, Y.Z., Ye, M.X.: The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos. Sci. Technol. 67, 3041–3050 (2007a). doi:10.1016/j.compscitech.2007.04.025

    Google Scholar 

  • Shen, J.F., Huang, W.S., Wu, L.P., Hu, Y.Z., Ye, M.X.: Thermo-physical properties of epoxy nanocomposites reinforced with amino-fucntionalized multi-walled carbon nanotubes. Compos. Part A 38, 1331–1336 (2007b). doi:10.1016/j.compositesa.2006.10.012

    Google Scholar 

  • Shin, K.B., Kim, C.G., Hong, C.S., Lee, H.H.: Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments. Compos. Part B-Eng. 31, 223–235 (2000a). doi:10.1016/S1359-8368(99)00073-6

    Google Scholar 

  • Shin, E.E., Morgan, R.J., Zhou, J., Lincoln, J., Jurek, R., Curliss, D.B.: Hygrothermal durability and thermal aging behavior prediction of high-temperature polymer-matrix composites and their resins. J. Thermoplast. Compos. 1340–57 (2000b). doi:10.1177/089270570001300104

  • Signor, A.W., VanLandingham, M.R., Chin, J.W.: Effects of ultraviolet radiation exposure on vinyl ester resins: characterization of chemical, physical and mechanical damage. Polym. Degrad. Stabil. 79, 359–368 (2003). doi:10.1016/S0141-3910(02)00300-2

    Google Scholar 

  • Singh, R.P., Khait, M., Zunjarrao, S.C., Korach, C.S., Pandey, G.: Environmental degradation and durability of epoxy-clay nanocomposites. J. Nanomater. 352746 (2010). doi:10.1155/2010/352746

  • Smith, J.G., Connell, J.W., Delozier, D.M., Lillehei, P.T., Watson, K.A., Lin, Y., et al.: Space durable polymer/carbon nanotube films for electrostatic charge mitigation. Polymer 45, 825–836 (2004a). doi:10.1016/j.polymer.2003.11.024

    Google Scholar 

  • Smith, J.G., Delozier, D.M., Connell, J.W., Watson, K.A.: Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation. Polymer 45, 6133–6142 (2004b). doi:10.1016/j.polymer.2004.07.004

    Google Scholar 

  • Smith, J.G., Connell, J.W., Watson, K.A., Danehy, P.M.: Optical and thermo-optical properties of space durable polymer/carbon nanotube films: experimental results and empirical equations. Polymer 46, 2276–2284 (2005). doi:10.1016/j.polymer.2005.01.022

    Google Scholar 

  • Springer, G.S.: Chapter 3: Moisture absorption in fibre-resin composites. In: Pritchard, G. (ed.) Developments in Reinforced Plastics. Applied Science, London (1982)

    Google Scholar 

  • St John, N.A., George, G.A.: Diglycidyl amine – epoxy resin networks: kinetics and mechanisms of cure. Prog. Polym. Sci. 19, 755–795 (1994). doi:10.1016/0079-6700(94)90032-9

    Google Scholar 

  • Tatro, S.R., Clayton, L.M., Muisener, P.A.O., Rao, A.M., Harmon, J.P.: Probing multi-walled nanotube/poly(methyl methacrylate) composites with ionizing radiation. Polymer 45, 1971–1979 (2004). doi:10.1016/j.polymer.2004.01.012

    Google Scholar 

  • Tian, W., Hodgkin, J.: Long-term aging in a commercial aerospace composite sample: chemical and physical changes. J. Appl. Polym. Sci. 115, 2981–2985 (2010). doi:10.1002/app. 31394

    Google Scholar 

  • Tsotsis, T.K., Lee, S.M.: Long-term thermo-oxidative aging in composite materials: failure mechanisms. Compos. Sci. Technol. 58, 355–368 (1998). doi:10.1016/S0266-3538(97)00123-1

    Google Scholar 

  • Tsotsis, T.K., Keller, S., Bardis, J., Bish, J.: Preliminary evaluation of the use of elevated pressure to accelerate thermo-oxidative aging in composites. Polym. Degrad. Stabil. 64, 207–212 (1999). doi:10.1016/S0141-3910(98)00190-6

    Google Scholar 

  • Valentini, L., Biagiotti, J., Kenny, J.M., Manchado, M.A.L.: Physical and mechanical behavior of single-walled carbon nanotube/polypropylene/ethylene–propylene–diene rubber nanocomposites. J. Appl. Polym. Sci. 89, 2657–2663 (2003). doi:10.1002/app. 12319

    Google Scholar 

  • Wang, S., Chung, D.D.L.: Effect of moisture on the interlaminar interface of a carbon fibre polymer-matrix composites, studied by contact electrical resistivity measurement. Compos. Interface. 9(5), 453–458 (2002). doi:10.1163/15685540260256546

    Google Scholar 

  • Wang, S., Kowalik, D.P., Chung, D.D.L.: Effects of the temperature, humidity, and stress on the interlaminar interface of carbon fibre polymer-matrix composites, studied by contact electrical resistivity measurements. J. Adhes. 78, 189–200 (2002). doi:10.1080/00218460210384

    Google Scholar 

  • Wang, J.G., Fang, Z.P., Gu, A.J., Xu, L.H., Liu, F.: Effect of amino-fucntionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J. Appl. Polym. Sci. 100, 97–104 (2006). doi:10.1002/app. 22647

    Google Scholar 

  • Watson, K.A., Ghose, S., Delozier, D.M., Smith, J.G., Connell, J.W.: Transparent, flexible, conductive carbon nanotube coatings for electrostatic charge mitigation. Polymer 46, 2076–2085 (2005). doi:10.1016/j.polymer.2004.12.057

    Google Scholar 

  • Weitsman, Y.: Moisture in composites: sorption and damage. In: Reifsnider, K.L. (ed.) Fatigue of Composite Materials, pp. 385–429. Elsevier Science Publishers, Amsterdam (1991)

    Google Scholar 

  • Wilkins, R., Pulikkathara, M.X., Khabashesku, V.N., Barrera, E.V., Vaidyanathan, R.K., Thibeault, S.A.: Materials for space applications. Mater. Res. Soc. Symp. Proc. 851, 267–278 (2005)

    Google Scholar 

  • Windle, A.: Two defining moments: a personal view. Compos. Sci. Technol. 67, 929–930 (2007). doi:10.1016/j.compscitech.2006.07.037

    Google Scholar 

  • Won, Y.G., Galy, J., Ge’rard, J.F., Pascault, J.P., Vellenger, V., Verdu, J.: Influence of sequence of chemical reactions on kinetics and solid state behavior for bisphenol A diglycidyl ether–bisphenol A–sulfanilamide ternary blends. Polymer 31, 179–186 (1990). doi:10.1007/PL00010783

    Google Scholar 

  • Woo, R.S.C., Chen, Y., Zhu, H., Li, J., Kim, J.K., Leung, C.K.Y.: Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part I: photo-degradation. Compos. Sci. Technol. 67, 3448–3456 (2007). doi:10.1016/j.compscitech.2007.03.004

    Google Scholar 

  • Woo, R.S.C., Zhu, H., Leung, C.K.Y., Kim, J.K.: Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part II: residual mechanical properties. Compos. Sci. Technol. 68, 2149–2155 (2008). doi:10.1016/j.compscitech.2008.03.020

    Google Scholar 

  • Wood, C.A., Bradley, W.L.: Determination of the effect of seawater on the interfacial strength of an interlay E-glass/graphite/epoxy composite by In-Situ Observation of Transverse Cracking in an Environmental SEM. Compos. Sci. Technol. 57(8), 1033–1043 (1997). doi:10.1016/S0266-3538(96)00170-4

    Google Scholar 

  • Xiao, G.Z., Shanahan, M.E.R.: Water absorption and desorption in an epoxy resin with degradation. J. Polym. Sci. Part B: Polym. Phys. 35, 2659–2670 (1997). doi:10.1002/(SICI)1099-0488(19971130)35:16<2659::AID-POLB9>3.0.CO;2-K

    Google Scholar 

  • Xiao, G.Z., Delamar, M., Shanahan, M.: Irreversible interactions between water and DGEBA/DDA epoxy resin during hygrothermal aging. J. Appl. Polym. Sci. 65, 449–458 (1997). doi:10.1002/(SICI)1097-4628(19970718)65:3<449::AID-APP4>3.0.CO;2-H

    Google Scholar 

  • Yip, M.C., Wu, H.Y.: Fatigue and electrical properties of CNT/phenolic composites under moisture-temperature effects. Key Eng. Mater. 334–335, 769–772 (2007). doi:10.4028/www.scientific.net/KEM.334-335.769

    Google Scholar 

  • Youssef, Z., Jacquemin, F., Gloaguen, D., Guillen, R.: A multi-scale analysis of composite structures: application to the design of accelerated hygrothermal cycles. Compos. Struct. 82, 302–309 (2008). doi:10.1016/j.compstruct.2007.01.008

    Google Scholar 

  • Zhang, Y.C., Wang, X.: Hygrothermal effects on interfacial stress transfer characteristics of carbon nanotubes-reinforced composites system. J. Reinf. Plast. Compos. 25, 71–88 (2006a). doi:10.1177/0731684406055456

    Google Scholar 

  • Zhang, Y.C., Wang, X.: Hygrothermal effects on initial frictional pull-out force of CNTs-reinforced composites. J. Therm. Stress. 29, 67–92 (2006b). doi:10.1080/01495730500257425

    Google Scholar 

  • Zhou, J., Lucas, J.P.: Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy. Polymer 40, 5505–5512 (1999a). doi:10.1016/S0032-3861(98)00790-3

    Google Scholar 

  • Zhou, J., Lucas, J.P.: Hygrothermal effects of epoxy resin. Part II: variations of glass transition temperature. Polymer 40, 5513–5522 (1999b). doi:10.1016/S0032-3861(98)00791-5

    Google Scholar 

  • Zunjarrao, S.C., Sriraman, R., Singh, R.P.: Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites. J. Mater. Sci. 41, 2219–2228 (2006). doi:10.1007/s10853-006-7179-2

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the EU (IAPETUS PROJECT, Grant Agreement Number: ACP8-GA-2009-234333) for financial support. Part of the presented experimental work is performed within the framework of the PhD study of PhD candidate Giorgos Gkikas, supervised by Prof. A. Paipetis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektaria-Marianthi Barkoula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barkoula, NM. (2013). Environmental Degradation of Carbon Nanotube Hybrid Aerospace Composites. In: Paipetis, A., Kostopoulos, V. (eds) Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4246-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4246-8_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4245-1

  • Online ISBN: 978-94-007-4246-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics