Skip to main content

The Equations of Fluid Dynamics and Some of Their Consequences

  • Chapter
  • First Online:
Hydrodynamic Instability and Transition to Turbulence

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 100))

Abstract

It is well known that the overwhelming majority of both natural and man-made flows of fluids do not vary smoothly in space and time but fluctuate in a quite disordered manner, exhibiting sudden and irregular (but still continuous) space- and time-variations. Such irregular flows are called “turbulent”. A very large amount of information is required to describe the whole of a field of turbulence in space and time, but as a rule only statistical properties, such as time averages are useful to scientists and engineers. Various semi-empirical, approximate methods have been devised to calculate the simpler statistical averages directly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As usual the word ‘fluid’ denotes here any liquid or gaseous medium.

  2. 2.

    The word turbulence (Latin turbulentia) originally refers to the disorderly motion of a crowd (turba). It was first used (in a sense close to that accepted today) around the year 1500 by the famous painter (and, as it was discovered much later, also a remarkable inventor and scientist) Leonardo da Vinci (who used the Italian spelling la turbolenza; see Frisch (1995, p. 112). However Leonardo did not write his scientific notes for publication and, being left-handed, his writings must be read with the help of a mirror. Leonardo’s notes remained little known up to the modern times, and by this reason the word ‘turbulence’ in its scientific meaning is often attributed to Kelvin; see, e.g., Lamb (1932), Sect. 366.

  3. 3.

    All material presented in this chapter can be found in a great number of textbooks and monographs on fluid mechanics. Therefore the few references presented here must be considered as only some examples of numerous books containing the stated results.

  4. 4.

    This use of the thermodynamic quantities and equations may raise some doubts, since a fluid flow with nonzero gradients of velocity and temperature does not constitute a system in thermodynamic equilibrium. However in all the books cited here it is explained that in the case of the moderate gradients encountered in real fluid flows, the fundamental thermodynamic quantities may be defined in such a way that all their ordinary properties, and the corresponding equations will be valid (for more details see, e.g., Sect. 49 of the book by Landau and Lifshitz (1987) or one of the more special publications, such, as, e.g., the paper by Tolman and Fine (1948) and the books by Chapman and Cowling (1952) and Hirschfelder et al. (1954)).

  5. 5.

    It seems natural to expect that the thickness δ will decrease with the increase of flow viscosity (a proof of this statement will be presented somewhat later). Note also that the value of δ cannot be determined uniquely since the boundary layer has no strictly defined upper edge and the velocity u = u(x, z) of flow in this layer tends with increase of z to the free-stream velocity U only asymptotically as z→∞. Hence δ must be defined somewhat artificially. In practice it is often taken to be equal to the distance from the plate at z = 0 up to the level z at which u attains a given, sufficiently great fraction of U, e.g., 0.99 U (in this case δ is μ sometimes denoted by δ 99). Some other possible definitions of the thickness δ will be indicated later.

  6. 6.

    Note, in particular, that an exact solution of Eq. (1.42a) under conditions (1.42b) was obtained long ago by the famous mathematician Weyl (1942).

  7. 7.

    This remarkable figure was included in the first German edition of the well-known book by Schlichting (1951) and then it was reproduced in all revised re-publications of this book and in many other books and survey papers dealing with flat-plate boundary layers.

References

  • Balakumar, P. (1997). Finite-amplitude equilibrium solutions for plane Poiseuille–Couette flow. Theoretical and Computational Fluid Dynamics, 9, 103–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Blasius, H. (1908). Grenzschichten in Flüssigkeiten mit kleiner Reibung, Zeitschrift für Mathematik und Physik, 56, 1–37. (trans: The boundary layers in fluids with little friction, NACA (National Advisory Committee for Aeronautics, Washington, D.C., USA) Technical Memorial, 1256, pp. 56, 1950).

    Google Scholar 

  • Boussinesq, J. (1903). Théorie analitique de la chaleur (Vol. 2, p. 172). Paris: Gauthier-Villars.

    Google Scholar 

  • Cebeci, T., & Cousteux, J. (1999). Modeling and computation of Boundary-Layer Flows. Berlin: Springer.

    MATH  Google Scholar 

  • Chandrasekhar, S. (1961). Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press. (Reprinted in 1981 by Dover, New York).

    MATH  Google Scholar 

  • Chapman, S., & Cowling, T. G. (1952). The mathematical theory of non-uniform cases. Cambridge: Cambridge University Press.

    Google Scholar 

  • Couette, M. (1888). Sur un nouvel appareil pour l’étude de frottement des fluides. Comptes Rendus Academy of Sciences, 107, 388–390

    Google Scholar 

  • Couette, M. (1890). Étude sur le frottement des liquides. Annales de Chimie et de Physique, 21(6), 433–510.

    MATH  Google Scholar 

  • Cowley, S. J., & Smith, F. T. (1985). On the stability of Poiseuille–Couette flow: A bifurcation from infinity. Journal of Fluid Mechanics, 156, 83–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Drazin, P. G. (2002). Introduction into hydrodynamic stability. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Drazin, P. G., & Reid, W. H. (1981). Hydrodynamic stability. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Falkner, V. M., & Skan, S. W. (1931). Some approximate solutions of the boundary layer equations. Philosophical Magazine, 12, 865–896.

    Google Scholar 

  • Frisch, U. (1995). Turbulence. The Legacy of A.N. Kolmogorov. Cambridge: Cambridge University Press.

    Google Scholar 

  • Goldstein, S. (1938). Modern developments in fluid mechanics (Vols. 1–2). Oxford: Clarendon Press, (reprinted in 1965 by Dover, New York)

    Google Scholar 

  • Goldstein, S. (1939). A note on the boundary-layer equations. Proceedings of the Cambridge Philosophical Society, 35, 338–340.

    Article  Google Scholar 

  • Hagen, G. H. L. (1839). Über die Bewegung des Wassers in engen zylindrischen Rören, Pogend. The Annual of Physical Chemistry, 46, 423–442.

    Article  Google Scholar 

  • Hansen, M. (1928). Die Geschwindigkeitsverteilung in der Grenzschicht an einer eingetauschten Platte. Abhandl. Aerodyn. Institute of Technology Hochschule Aachen, 8, 31–45 (also in Z. angew. Math. Mech., 8, 165–199; trans: Velocity distribution in the boundary layer of a submerged platte. NACA Technical Memorandum, 585, 26, 1930).

    Google Scholar 

  • Hartree, D. R. (1937). On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer. Proceedings of Cambridge Philosophical Society, 33, 223–239.

    Article  Google Scholar 

  • Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. (1954). Molecular theory of gases and liquids. New York: Wiley, London: Chapman and Hall.

    Google Scholar 

  • Hunt, J. C. R., Phillips, O. M., & Williams, D. (Eds.). (1991). Turbulence and stochastic processes. Kolmogorov’s ideas 50 years on. London: The Royal Society, (also in Proceedings of the Royal Society London, A 434, (pp. 1–240) 1990).

    Google Scholar 

  • Joseph, D. D. (1976). Stability of fluid motions (Vols. 1 and 2). Berlin: Springer.

    Google Scholar 

  • Kolmogorov, A. N. (1941a). The local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Doklady Akademii Nauk SSSR, 30, 29–303.

    Google Scholar 

  • Kolmogorov, A. N. (1941b). Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 19–21. (English translations of both papers were first published in Moscow in 1941 in full transl. of ‘Doklady AN SSSR’ and then were several times republished in the West).

    Google Scholar 

  • Koschmieder, E. L. (1993). Benard cells and taylor vorticles. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lagerstrom, P. A. (1964). Laminar flow theory. In F. K. Moore (Ed.), Theory of laminar flow (pp. 20–285). Princeton: Princeton University Press, (reprinted in 1996 by Princeton University Press as a separate book).

    Google Scholar 

  • Lamb, H. (1932). Hydrodynamics, (6th ed.). Cambridge: Cambridge University Press, (reprinted in 1945 by Dover, New York).

    MATH  Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1980). Statistical physics, Pt. 1. Oxford: Pergamon.

    Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1987). Fluid mechanics. Oxford: Pergamon.

    MATH  Google Scholar 

  • Loitsianskii, L. G. (1962). Laminar boundary layer. Moscow: Fizmatgiz Press.

    Google Scholar 

  • Loitsianskii, L. G. (1970). The development of boundary-layer theory. USSR Journal of Engineering Physics and Thermophysics, 19(3), 1159–1172.

    Google Scholar 

  • Lorentz, H. A. (1907). Über die Entstehung turbulenter Flüssigkeitsbevegungen und über den Einfluss dieser Bewegungen bei der Strömung durch Röhren. In: Abhandlungen über theoretische Physik (pp. 43–71). Leipzig: Teubner.

    Google Scholar 

  • Lungren, T. S. (2004). An inertial range scaling law. In: H. I. Andersson & P. Å.de Krogstad (Eds.), Advances in turbulence X (pp. 433–440). Barcelona: CIMNE (International Center for Numerical Methods in Engineering, Barcelona, Spain).

    Google Scholar 

  • Mangler, W. (1943). Die “ähnlichen” Losungen der Prandtlschen Grenzschichtgleichungen. Z. angew. Math. Mech., 23, 21–251.

    MathSciNet  Google Scholar 

  • Michaljan, J. M. (1962). A rigorous exposition of the Boussinesq approximation applicable to a thin layer of fluid. The Astrophysical Journal, 136, 1126–1133.

    Article  MathSciNet  Google Scholar 

  • Monin, A. S., & Yaglom A. M. (1971,1975). Statistical fluid mechanics (Vols. 1 and 2). Cambridge: MIT Press.

    Google Scholar 

  • Nelkin, M. (1994). Universality and scaling in fully developed turbulence. Advances in Physics, 43, 143–181.

    Article  Google Scholar 

  • Nickel, K. (1973). Prandtl’s boundary-layer theory from the viewpoint of a mathematician. The Annual Review of Fluid Mechanics, 5, 405–428.

    Article  Google Scholar 

  • Nikuradze, J. (1942). Laminare Reibungsschichten an der längsamgeströmten Platte. Zentrale f. wiss. Berlin: Berichtungen.

    Google Scholar 

  • Oberbeck, A. (1879). Über die Wärmeleitung der Flüssigkeiten bei der Berücksichtung der Strömungen infolge von Temperaturdifferenzen. The Annual Physical Chemistry, 7, 271–292.

    Article  MATH  Google Scholar 

  • Oberbeck, A. (1888). Über die Bewegungserscheinungen der Atmosphäre, Sitzungsber. Königl. Preuss. Akad. Wiss., 27, 1129-1138.

    Google Scholar 

  • Panton, R. L. (1996). Incompressible flow (2nd ed.). New York: Willey.

    Google Scholar 

  • Poiseuille, J. L. M. (1840–1841). Recherches expérimentales sur le mouvement des liquides dans les tubes de trés petits diamètres, Parts I–IV. C.R. Academy of Sciences, 11, 961–967; 11, 1041–1048; 12, 112–115.

    Google Scholar 

  • Prandtl, L. (1904). Über Flüssigkeitbewegungen bei sehr kleine Reibung. In: Verhandl. III Intern. Math. Kongr. Heidelberg, 494–491, Leipzig: Teubner (also in: L. Prantl, Gesammelte Abhandlungen zur angewandten Mechanik, Hydro- und Aerodynamik, Teil 2, 575–584, Springer, Berlin, 1961).

    Google Scholar 

  • Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philosophical translation of The Royal Society Series, 174, 935–982 (also Scientific Papers, 5414 Vol. II, 51–105, Cambridge University Press, 1901).

    Google Scholar 

  • Rouse, H., & Ince, S. (1957). History of hydraulics. Iowa City: Iowa Institute of Hydraulic Research , and State University of Iowa(reprinted in 1963 by Dover, New York).

    Google Scholar 

  • Schlichting, H. (1951). Grenzschicht-Theorie (1st ed.). Karlsruhe: Verlag G. Braun.

    MATH  Google Scholar 

  • Schlichting, H., & Gersten, K. (2000). Boundary layer theory (8th english ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Schiller, L. (1934). Neue quantitative Versuche zur Turbulenzentstehung. Zeitschrift für Angewandte Mathematik und Mechanik, 14, 36–48.

    Google Scholar 

  • Schmid, P. J., & Henningson, D. S. (2001). Stability and transitions in shear flows. Berlin: Springer.

    Google Scholar 

  • Spiegel, E. A., & Veronis, G. (1960). On the Boussinesq approximation for a compressible fluid. The Astrophysical Journal, 131, 442–447.

    Article  MathSciNet  Google Scholar 

  • Squire, H. B. (1953). Heat transfer. In L. Howarth (Ed.), Modern developments in fluid dynamics. high speed flow (Vol. II, pp. 757–853). Oxford: Clarendon Press.

    Google Scholar 

  • Stokes, G. G. (1845). On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society, 8, 287–341 (also in: Mathematical and Physical Papers, Vol. 1, 75–129, Cambridge University Press, 1980, and Johnson Reprint Corporation, New York, 1966).

    Google Scholar 

  • Sutera, S. P., & Skalak, R. (1993). The history of Poiseuille law. The Annual Review of Fluid Mechanics, 25, 1–19.

    Article  MathSciNet  Google Scholar 

  • Taylor, G. I. (1923). Stability of viscous liquid contained between rotating cylinders. The Philosophical Transactions of the Royal Society London, A 223, 289–343 (also in Scientific Papers, Vol. 4, pp. 34–85, Cambridge: Cambridge University Press, 1971).

    MATH  Google Scholar 

  • Tolman, R. S., & Fine, P. C. (1948). On the irreversible production of entropy. Reviews of Modern Physics, 20, 51–77.

    Article  Google Scholar 

  • Wang, C. Y. (1991). Exact solutions of the steady-state Navier–Stokes equations. The Annual Review of Fluid Mechanics, 23, 159–177.

    Article  Google Scholar 

  • Weyl, H. (1942). On the differential equations of the simplest boundary-layer problems. Annals of Mathematics, 43, 381–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Yaglom, A. M. (1981). Laws of small-scale turbulence in atmosphere in ocean (in commemoration of the 40th anniversary of the theory of locally isotropic turbulence). Izv. Akad. Nauk SSSR, Ser. Fis. Atmosph. i Oceana, 17, 1235–1257 (in Russian, trans: Izvestiya, Academy of Sciences USSR, Atmospheric and Oceanic Physics, 17, 919–935, 1981).

    Google Scholar 

  • Yaglom, A. M. (2004). Modern state of Kolmogorov’s theory of developed turbulence. In H. I. Andersson & P. Å.de Krogstad (Eds.), Advances in turbulence X (pp. 443–448). Barcelona: CIMNE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uriel Frisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yaglom, A., Frisch, U. (2012). The Equations of Fluid Dynamics and Some of Their Consequences. In: Frisch, U. (eds) Hydrodynamic Instability and Transition to Turbulence. Fluid Mechanics and Its Applications, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4237-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4237-6_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4236-9

  • Online ISBN: 978-94-007-4237-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics