Skip to main content

Midkine: A Player in Innate Immunity

  • Chapter
  • First Online:
Midkine: From Embryogenesis to Pathogenesis and Therapy
  • 424 Accesses

Abstract

The immune system of humans can be viewed as two parallel and communicating units, i.e. innate and adaptive immunity. Innate immunity provides a readily available, sometimes inducible, and less specific defense against potentially harmful pathogens of the environment. Adaptive immunity is slower, highly specific via production of immunoglobulins, and has an immunologic memory (e.g. as seen in vaccination). The mechanisms and functions of innate immunity have caught increasing attention in recent years. An important part, executing antimicrobial activity of innate immunity, is antimicrobial polypeptides (AMPs). Midkine shares several features with AMPs, including cationicity at physiological pH, heparin-binding properties, domains containing anti-parallel β-sheets (similar to the classical AMPs β-defensins), and expression by epithelial cells. In addition, midkine recruits and activates neutrophils, and acts as a growth factor, features shared with many AMPs. Recently, midkine was shown to have strong bactericidal activity against both gram-positive and gram-negative bacteria in vitro, an activity exerted through membrane-disrupting properties. Bactericidal activity was also found in the early midkine-orthologue Miple2 of Drosophila melanogaster, indicating conserved antibacterial activity in this small family of molecules during evolution. In this review, we discuss midkine in the context of innate immunity in general and particularly as an AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganz T (2003) The role of antimicrobial peptides in innate immunity. Integr Comp Biol 43:300–304

    Article  PubMed  CAS  Google Scholar 

  2. Diamond G, Beckloff N, Weinberg A et al (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    Article  PubMed  CAS  Google Scholar 

  3. Bernard JJ, Gallo RL (2011) Protecting the boundary: the sentinel role of host defense peptides in the skin. Cell Mol life Sci CMLS 68:2189–2199

    Article  CAS  Google Scholar 

  4. Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215

    Article  PubMed  CAS  Google Scholar 

  5. Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  PubMed  CAS  Google Scholar 

  6. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  7. Elsbach P (2003) What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses? J Clin Invest 111:1643–1645

    PubMed  CAS  Google Scholar 

  8. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  PubMed  CAS  Google Scholar 

  9. Niyonsaba F, Nagaoka I, Ogawa H et al (2009) Multifunctional antimicrobial proteins and peptides: natural activators of immune systems. Curr Pharm Des 15:2393–2413

    Article  PubMed  CAS  Google Scholar 

  10. Andersson E, Rydengard V, Sonesson A et al (2004) Antimicrobial activities of heparin-binding peptides. Eur J Biochem 271:1219–1226

    Article  PubMed  CAS  Google Scholar 

  11. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  PubMed  CAS  Google Scholar 

  12. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  13. Harder J, Glaser R, Schroder JM (2007) Human antimicrobial proteins effectors of innate immunity. J Endotoxin Res 13:317–338

    Article  PubMed  CAS  Google Scholar 

  14. Cudic M, Otvos L Jr (2002) Intracellular targets of antibacterial peptides. Curr Drug Targets 3:101–106

    Article  PubMed  CAS  Google Scholar 

  15. Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    Article  PubMed  CAS  Google Scholar 

  16. Frick IM, Akesson P, Rasmussen M et al (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 2278:16561–16566

    Article  Google Scholar 

  17. Karlsson C, Eliasson M, Olin AI et al (2009) SufA of the opportunistic pathogen finegoldia magna modulates actions of the antibacterial chemokine MIG/CXCL9, promoting bacterial survival during epithelial inflammation. J Biol Chem 284:29499–29508

    Article  PubMed  CAS  Google Scholar 

  18. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–371

    Article  PubMed  CAS  Google Scholar 

  19. Svensson SL, Pasupuleti M, Walse B et al (2010) Midkine and pleiotrophin have bactericidal properties: preserved antibacterial activity in a family of heparin-binding growth factors during evolution. J Biol Chem 285:16105–16115

    Article  PubMed  CAS  Google Scholar 

  20. Palmer RH, Vernersson E, Grabbe C et al (2009) Anaplastic lymphoma kinase: signalling in development and disease. Biochem J 420:345–361

    Article  PubMed  CAS  Google Scholar 

  21. Takada T, Toriyama K, Muramatsu H et al (1997) Midkine, a retinoic acid-inducible heparin-binding cytokine in inflammatory responses: chemotactic activity to neutrophils and association with inflammatory synovitis. J Biochem 122:453–458

    Article  PubMed  CAS  Google Scholar 

  22. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  23. Iwasaki W, Nagata K, Hatanaka H et al (1997) Solution structure of midkine, a new heparin-binding growth factor. EMBO J 16:6936–6946

    Article  PubMed  CAS  Google Scholar 

  24. Goldman MJ, Anderson GM, Stolzenberg ED et al (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560

    Article  PubMed  CAS  Google Scholar 

  25. Englund C, Birve A, Falileeva L et al (2006) Miple1 and miple2 encode a family of MK/PTN homologues in Drosophila melanogaster. Dev Genes Evol 216:10–18

    Article  PubMed  CAS  Google Scholar 

  26. De Y, Chen Q, Schmidt AP et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  Google Scholar 

  27. Hoover DM, Boulegue C, Yang D et al (2002) The structure of human macrophage inflammatory protein-3alpha/CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human beta-defensins. J Biol Chem 277:37647–37654

    Article  PubMed  CAS  Google Scholar 

  28. Yang D, Chen Q, Hoover DM et al (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74:448–455

    Article  PubMed  CAS  Google Scholar 

  29. Takada T, Kinkori T, Muramatsu H et al (1997) Midkine, a retinoic acid-inducible heparin-binding cytokine, is a novel regulator of intracellular calcium in human neutrophils. Biochem Biophys Res Commun 241:756–761

    Article  PubMed  CAS  Google Scholar 

  30. Maruyama K, Muramatsu H, Ishiguro N et al (2004) Midkine, a heparin-binding growth factor, is fundamentally involved in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 50:1420–1429

    Article  PubMed  CAS  Google Scholar 

  31. You Z, Dong Y, Kong X et al (2008) Midkine is a NF-kappaB-inducible gene that supports prostate cancer cell survival. BMC Med Genomics 1:6

    Article  PubMed  Google Scholar 

  32. Krzystek-Korpacka M, Mierzchala M, Neubauer K (2011) Midkine, a multifunctional cytokine, in patients with severe sepsis and septic shock: a pilot study. Shock 35:471–477

    Article  PubMed  CAS  Google Scholar 

  33. Reynolds PR, Mucenski ML, Le Cras TD et al (2004) Midkine is regulated by hypoxia and causes pulmonary vascular remodeling. J Biol Chem 279:37124–37132

    Article  PubMed  CAS  Google Scholar 

  34. Peyssonnaux C, Cejudo-Martin P, Doedens A et al (2007) Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol 178:7516–7519

    PubMed  CAS  Google Scholar 

  35. Rius J, Guma M, Schachtrup C et al (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807–811

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara L. Nordin .

Editor information

Editors and Affiliations

Additional information

Funding: The work was supported by grants from the Swedish Research Council, the Swedish Heart and Lung Foundation, the Swedish Government Funds for Clinical Research (ALF), the foundations of Bergh, Greta & Johan Kock, and Alfred Österlund.

Conflict of interest: The authors have a patent application concerning the antimicrobial activity of midkine.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nordin, S.L., Egesten, A. (2012). Midkine: A Player in Innate Immunity. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_3

Download citation

Publish with us

Policies and ethics