Skip to main content

Polysaccharide-Based Macromolecular Materials for Decolorization of Textile Effluents

  • Chapter
  • First Online:
Advances in Water Treatment and Pollution Prevention

Abstract

Polysaccharides are the renewable natural reservoir which can be tailored to obtain a broad spectrum of macromolecular materials. The multifunctional nature of polysaccharides offers wide flexibility of tailoring and modification. To suit adsorption applications, many water-soluble polysaccharides have been transformed to insoluble materials by chemical modification and cross-linking. These materials have also been utilized for coagulation–flocculation of industrial wastes. Depending upon the targeted application, which may be either adsorption or coagulation and flocculation, the solubility and characteristics of these materials are tailored. Present chapter focuses on the polysaccharides and polysaccharide-derived materials that are known to decolorize industrial waste and synthetic aqueous dye solutions through flocculation and adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh R (2002) Synthetic dyes. Mittal Publication, New Delhi, pp 1–241

    Google Scholar 

  2. Janoš Pavel, Coskun S, Pilařová V, Rejnek J (2009) Removal of basic (methylene blue) and acid (egacid orange) dyes from waters by sorption on chemically treated wood shavings. Bioresour Technol 100:1450–1453

    Google Scholar 

  3. Clarke EA, Anliker R (1980) Organic dyes and pigments. In: Handbook of environmental chemistry, anthropogenic compounds, part A, vol 3. Springer, New York, pp 181–215

    Google Scholar 

  4. Bae JS, Freeman HS (2007) Aquatic toxicity evaluation of new direct dyes to the Daphnia magna. Dye Pigment 73:81–85

    CAS  Google Scholar 

  5. Akgerman A, Guzel B (2000) Mordant dyeing of wool by supercritical processing. J Supercrit Fluid 18:247–252

    Google Scholar 

  6. Štěpánková M, Wiener J, Rusinová K (2011) Decolourization of vat dyes on cotton fabric with infrared laser light. Cellulose 18:469–478

    Google Scholar 

  7. Yuksel E, Gurbulak E, Eyvaz M (2011) Decolorization of a reactive dye solution and treatment of a textile wastewater by electrocoagulation and chemical coagulation: techno-economic comparison. Environ Prog Sustain Energy (in press)

    Google Scholar 

  8. Reife A, Freeman HS (2007) Dyes for polyester: disperse dyes. Chim Oggi 25:38–41

    CAS  Google Scholar 

  9. Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    CAS  Google Scholar 

  10. Ozyurt M, Ataçag H (2003) Biodegradation of azo dyes: a review. Fresenius Environ Bull 12:1294–1302

    CAS  Google Scholar 

  11. Chattopadhyay SN, Pan NC, Roy AK, Khan A (2009) Coloration of jute fabric using sulphur dyes. Int Dye 194:35–39

    Google Scholar 

  12. Banat IM, Nigam SP, Marchant R (1996) Microbial decolorization of textile dye containing effluents: a review. Bioresour Technol 58:217–227

    CAS  Google Scholar 

  13. Ganesh R, Boardman GD, Michelsen D (1994) Fate of azo dyes in sludges. Water Res 28:1367–1376

    CAS  Google Scholar 

  14. Solozhenko EG, Soboleva NM, Goncharuck VV (1995) Decolorization of azo dyes solutions by Fentons oxidation. Water Res 29:2206–2210

    CAS  Google Scholar 

  15. Ibrahim NA, El-Gamal AR, Mahrous F (2008) Improving the environmental aspects of sulphur dyeing of cotton knitted fabrics. J Nat Fiber 5:238–250

    CAS  Google Scholar 

  16. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textiles effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    CAS  Google Scholar 

  17. Kang SF, Liao CH, Chen MC (2002) Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46:923–928

    CAS  Google Scholar 

  18. Lin SH, Peng FC (1996) Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge. Water Res 30:587–592

    CAS  Google Scholar 

  19. Arslan I, Akmehmet BI, Tuhkanen T (1999) Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton’s reagent. Chemosphere 39:2767–2783

    CAS  Google Scholar 

  20. Zonoozi MH, Moghaddam MR, Arami M (2009) Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum. Water Sci Technol 59:1343–1351

    CAS  Google Scholar 

  21. Edzwald JK (1993) Coagulation in drinking water treatment: particles, organics and coagulants. Water Sci Technol 27:21–35

    CAS  Google Scholar 

  22. Viraraghavan T, Wimmer CH (1988) Polyaluminium chloride as an alternative to alum coagulation: a case study. In: Proceedings of Canadian society of civil engineers annual conference, pp 480–498

    Google Scholar 

  23. Sanghi R, Bhattacharya B, Singh V (2002) Cassia angustifolia seed gum as an effective natural coagulant for decolorisation of dye solutions. Green Chem 4:252–254

    CAS  Google Scholar 

  24. Sanghi R, Bhattacharya B, Dixit A, Singh V (2006) Ipomoea dasysperma seed gum: an effective natural coagulant for the decolorization of textile dye solutions. J Environ Manage 81:36–41

    CAS  Google Scholar 

  25. Singh RP, Karmakar GP, Rath SK, Pandey SR, Triphaty T, Panda J, Kanan K, Jain SK, Lan NT (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40:46–60

    CAS  Google Scholar 

  26. Singh RP, Tripathy T, Karmakar GP, Rath SK, Karmakar NC, Pandey SR, Kannan K, Jain SK, Lan NT (2000) Novel biodegradable flocculants based on polysaccharides. Curr Sci 78:798–803

    CAS  Google Scholar 

  27. Shultz CR, Okun DA (1983) Treating surface waters for communities in developing countries. J Am Water Work Assoc 75:212–219

    Google Scholar 

  28. Jahn SAA (1988) Using Moringa seeds as coagulants in developing countries. J Am Water Work Assoc 6:43–50

    Google Scholar 

  29. Joshi VA, Nanoti MV (1999) Lab studies on Tarota as coagulant aid in water treatment. Ind J Environ Prot 19:451–455

    CAS  Google Scholar 

  30. Christman RF (1967) Performance of chitosan as polyelectrolyte. Food, Chemical and Research Corporation, report for Kypro Co., Bellvina, Washington

    Google Scholar 

  31. Sanghi R, Bhattacharya B, Singh V (2006) Use of Cassia javahikai seed gum and gum-g-polyacrylamide as coagulant aid for the decolorization of textile dye solutions. Bioresour Technol 97:1259–1264

    CAS  Google Scholar 

  32. Velmurugan P, Kumar RV, Dhinakaran G (2011) Dye removal from aqueous solution using low cost adsorbent. Int J Environ Sci 1:1492–1503

    CAS  Google Scholar 

  33. Volesky B (1999) Biosorption for the next century. In: Ballester A, Amils R (eds) Biohydrometallurgy and the environment toward the mining of the 21st century. International biohydrometallurgy symposium proceedings, volume B. Elsevier Sciences, Amsterdam, the Netherlands, pp 161–170

    Google Scholar 

  34. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of 821 recent literature. Prog Polym Sci 39:399–447

    Google Scholar 

  35. Chandra R, Rastogi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    CAS  Google Scholar 

  36. Gonera A, Goclik V, Baum M, Mischnick P (2002) Preparation and structural characterization of O-aminopropyl starch and amylose. Carbohydr Res 337:2263–2272

    CAS  Google Scholar 

  37. Wesslen BK, Wesslen B (2002) Synthesis of amphiphilic amylose and starch derivatives. Carbohydr Polym 47:303–311

    CAS  Google Scholar 

  38. Rachel A-V, Rinaudo M (2003) Synthesis of starch derivatives with labile cationic groups. Int J Biol Macromol 31:123–129

    Google Scholar 

  39. Le TC, Lacroix M, Ispas-Szabo P, Mateescu MA (2003) N-acylated chitosan: hydrophobic matrices for controlled drug release. J Control Release 93:1–13

    Google Scholar 

  40. Kim TH, Jiang HL, Jere D, Park IK, Cho MH, Nah JW, Choi YJ, Akaike T, Cho CS (2007) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32:726–753

    CAS  Google Scholar 

  41. Li F, Chen W, Tang C, Zhang S (2009) Development of hydrogen peroxide biosensor based on in situ covalent immobilization of horseradish peroxidase by one-pot polysaccharide-incorporated sol-gel process. Talanta 77:1304–1308

    CAS  Google Scholar 

  42. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051

    CAS  Google Scholar 

  43. Wang J, Jin X, Chang D (2009) Chemical modification of chitosan under high-intensity ultrasound and properties of chitosan derivatives. Carbohydr Polym 78:175–177

    CAS  Google Scholar 

  44. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93

    CAS  Google Scholar 

  45. Hudson SM, Smith C (1998) Polysaccharide: chitin and chitosan: chemistry and technology of their use as structural materials. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, New York, pp 96–118

    Google Scholar 

  46. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal – a review. J Environ Manage 90:2313–2342

    CAS  Google Scholar 

  47. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    CAS  Google Scholar 

  48. Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption of acid dyes on chitosan-equilibrium isotherm analyses. Proc Biochem 39:693–702

    CAS  Google Scholar 

  49. Wu FC, Tseng RL, Juang RS (2000) Comparative adsorption of metal and dye on flake- and bead-types of chitosan prepared from fishery wastes. J Hazard Mater B73:63–75

    Google Scholar 

  50. Chiou MS, Ho PY, Li HY (2004) Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dye Pigment 60:69–84

    CAS  Google Scholar 

  51. Hu ZG, Zhang J, Chan WL, Szeto YS (2006) The sorption of acid dye onto chitosan nanoparticles. Polymer 47:5838–5842

    CAS  Google Scholar 

  52. Piccin JS, Vieira MLG, Gonçalves JO, Dotto GL, Pintoz LAA (2009) Adsorption of FD&C Red No. 40 by chitosan: isotherms analysis. J Food Eng 95:16–20

    CAS  Google Scholar 

  53. Mahmoodi NM, Salehi R, Arami M, Bahrami H (2011) Dye removal from colored textile wastewater using chitosan in binary systems. Desalination 267:64–72

    CAS  Google Scholar 

  54. Wu FC, Tseng RL, Juang RS (2001) Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization. J Hazard Mater B81:167–177

    Google Scholar 

  55. Chatterjee S, Chatterjee S, Chatterjee BP, Das AR, Guha AK (2005) Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads. J Colloid Interface Sci 288:30–35

    CAS  Google Scholar 

  56. Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK (2007) Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics. Colloid Surf A 299:146–152

    CAS  Google Scholar 

  57. Morais WA, Fernandes ALP, Dantas TNC, Pereira MR, Fonseca JLC (2007) Sorption studies of a model anionic dye on cross-linked chitosan. Colloid Surf A310:20–31

    Google Scholar 

  58. McKay G, Blair HS, Gardner JR (1989) The adsorption of dyes onto chitin in fixed bed column and batch adsorbers. J Appl Polym Sci 28:1499–1544

    Google Scholar 

  59. Vachoud L, Zydowicz N, Domard A (2001) Sorption and desorption studies on chitin gels. Int J Biol Macromol 28:93–101

    CAS  Google Scholar 

  60. Crini G et al (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    CAS  Google Scholar 

  61. Chiou MS, Li HY (2002) Equilibrium and kinetic modelling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater B93:233–248

    Google Scholar 

  62. Chiou MS, Li HY (2003) Adsorption behaviour of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50:1095–1105

    CAS  Google Scholar 

  63. Martel B, Devassine M, Crini G, Weltrowski M, Bourdonneau M, Morcellet M (2001) Preparation and sorption properties of a beta-cyclodextrin-linked chitosan derivative. J Polym Sci Part A: Polym Chem 39:169–176

    CAS  Google Scholar 

  64. Chao AC, Shyu SS, Lin YC, Mi FL (2004) Enzymatic grafting of carboxyl groups on to chitosan—to confer on chitosan the property of a cationic dye adsorbent. Bioresour Technol 91:157–162

    CAS  Google Scholar 

  65. Singh V, Tripathi DN, Tiwari A, Sanghi R (2006) Microwave synthesized Chitosan graft-poly(methylmethacrylate): an efficient Zn+2 ion binder. Carbohydr Polym 65:35–41

    CAS  Google Scholar 

  66. Singh V, Sharma AK, Sanghi R (2009) Poly(acrylamide) functionalized chitosan: an efficient adsorbent for azo dyes from aqueous solutions. J Hazard Mater 166:327–335

    CAS  Google Scholar 

  67. WanNgah WS, Ariff NFM, Hanafiah MAKM (2010) Preparation, characterization, and environmental application of cross-linked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water Air Soil Pollut 206:225–236

    Google Scholar 

  68. Chang MY, Juang RS (2004) Adsorption of tannic acid, humic acid and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278:18–25

    CAS  Google Scholar 

  69. Nandi BK, Goswami A, Purkait MK (2009) Adsorption characteristics of brilliant green dye on kaolin. J Hazard Mater 161:387–395

    CAS  Google Scholar 

  70. Wang L, Wang A (2007) Adsorption characteristics of congo red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147:979–985

    CAS  Google Scholar 

  71. Wang CC, Juang LC, Hsu TC, Lee CK, Lee JF, Huang FC (2004) Adsorption of basic dyes onto montmorillonite. J Colloid Interface Sci 273:80–86

    CAS  Google Scholar 

  72. Zhu HY, Jiang R, Xiao L (2010) Adsorption of an anionic dye by chitosan/kaolin/_-Fe2O3 composites. Appl Clay Sci 48:522–526

    CAS  Google Scholar 

  73. Won SL, Lee HC, Jeong YG, Min BG, Lee SC (2009) Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams. Fiber Polym 10:636–642

    Google Scholar 

  74. Hameed BH, Hasan M, Ahmad AL (2008) Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chem Eng J 136:164–172

    Google Scholar 

  75. Cestari AR, Vieira EF, Pinto AA, Lopes EC (2005) Multistep adsorption of anionic dyes on silica/chitosan hybrid. 1. Comparative kinetic data from liquid- and solid-phase models. J Colloid Interface Sci 292:363–372

    CAS  Google Scholar 

  76. Copello GJ, Meberta AM, Raineria M, Pesentia MP, Diaza LE (2011) Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol–gel method. J Hazard Mater 186:932–939

    CAS  Google Scholar 

  77. Li F, Li J, Zhang S (2008) Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol–gel process for protein recognition. Talanta 74:1247–1255

    CAS  Google Scholar 

  78. Zubieta CE, Messina PV, Luengo C, Dennehy M, Pieroni O, Schulz PC (2008) Reactive dyes remotion by porous TiO2–chitosan materials. J Hazard Mater 152:765–777

    CAS  Google Scholar 

  79. Holzer L, Münch B, Rizzi M, Wepf R, Marschall P, Graule T (2010) 3D microstructure analysis of hydrated bentonite with cryo-stabilized pore water. Appl Clay Sci 47:330–342

    CAS  Google Scholar 

  80. Li Q, Yue QY, Sun HJ, Su Y, Gao BY (2010) A comparative study on the properties, mechanism and process designs for the adsorption of non-ionic or anionic dyes onto cationic-polymer/bentonite. J Environ Manage 91:1601–1611

    CAS  Google Scholar 

  81. Wei JM, Zhu RL, Zhu JX, Ge F, Yuan P, He HP et al (2009) Simultaneous sorption of crystal violet and 2-naphthol to bentonite with different CECs. J Hazard Mater 166:195–199

    CAS  Google Scholar 

  82. Lyoo WS, Lee HC, Jeong YG, Min BG, Lee SC (2009) Preparation and acid dyes adsorption behavior of polyurethane-chitosan composite foams. Fiber Polym 10:636–642

    Google Scholar 

  83. Jang SH, Min BG, Jeong YG, Lyoo WS, Lee SC (2008) Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composites foams. J Hazard Mater 152:1285–1292

    CAS  Google Scholar 

  84. Moisés LP, João P, Ana PC, Manuela BC, João CB (2006) Synthesis and regeneration of polyurethane/adsorbent composites and their characterization by adsorption methods. Micropor Mesopor Mat 89:260–269

    Google Scholar 

  85. Buleon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    CAS  Google Scholar 

  86. Tester RF, Karkalas J, Qi X (2004) Starch-composition, fine structure and architecture. J Cereal Sci 39:151–165

    CAS  Google Scholar 

  87. Crini G (2003) Studies of adsorption of dyes on beta-cyclodextrin polymer. Bioresour Technol 90:193–198

    CAS  Google Scholar 

  88. Delval F, Crini G, Vebrel J, Knorr M, Sauvin G, Conte E (2003) Starch-modified filters used for the removal of dyes from waste water. Macromol Symp 203:165–171

    CAS  Google Scholar 

  89. Lu W, Yang JZ, Cui CX (2003) Poly(sulfobetaine)s and corresponding cationic polymers. XI. Synthesis and aqueous solution properties of a cationic poly(methyl iodide quaternized ethyl vinyl ether/N, N-dimethylaminopropyl maleamidic acid) copolymer. J Appl Polym Sci 89:263–267

    Google Scholar 

  90. Xu SM, Feng S, Yue F, Wang JD (2004) Adsorption of Cu(II) ions from an aqueous solution by cross-linked amphoteric starch. J Appl Polym Sci 92:728–732

    CAS  Google Scholar 

  91. Xu SM, Feng S, Peng G et al (2005) Removal of Pb(II) by cross-linked amphoteric starch containing the carboxymethyl group. Carbohydr Polym 60:301–305

    CAS  Google Scholar 

  92. Wang JL, Xu SM, Wu RL et al (2006) Adsorption behaviors of acid and basic dyes on cross-linked amphoteric starch. Chem Eng J 117:161–167

    Google Scholar 

  93. Mishra A, Bajpai M, Pal S, Agrawal M, Pandey S (2006) Tamarindus indica mucilage and its acrylamide-grafted copolymer as flocculants for removal of dyes. Colloid Polym Sci 285:161–168

    CAS  Google Scholar 

  94. Sandhu JS, Hudson GJ, Kennedy JF (1981) The gel nature and structure of the carbohydrate of isapghula husk ex Plantago ovata Forsk. Carbohydr Res 93:247–259

    CAS  Google Scholar 

  95. Samuelsen AB, Lund I, Djahromi JM, Paulsen BS, Wold LK, Knutsen SH (1999) Structural features and anticomplementary activity of some heteroxylan polysaccharide fractions from the seeds of Plantago major L. Carbohydr Polym 38:133–143

    CAS  Google Scholar 

  96. Sanghi R, Bhattacharya B (2005) Psyllium and chitosan as coagulant aids for decolourization of dye solutions. Water Qual Res J Can 40:97–101

    CAS  Google Scholar 

  97. Li G, Gregory J (1991) Flocculation and sedimentation of high-turbidity waters. Water Res 25:1137–1143

    Google Scholar 

  98. Karthikeyan J (1990) A study on colour removal from textile dye waste by chemical treatment. Dissertation, Indian Institute of Technology, Kanpur, India

    Google Scholar 

  99. Kace JS, Linford HB (1975) Reduced cost flocculation of a textile dyeing wastewater. J Water Pollut Control Fed 47:1971–1980

    Google Scholar 

  100. Rebhun M, Weimberg A, Narkis N (1970) Treatment of wastewater from cotton. Dyeing and finishing works for reuse. In: Proceedings of the 25th industrial waste conference, Purdue University, West Layfayette, Indiana

    Google Scholar 

  101. Sutherland JP, Folkard GK, Mtawali MA, Grant WD (1994) Moringa oleifera as a natural coagulant, affordable water supply and sanitation. In: 20th WEDC conference, Colombo, Sri Lanka, pp 297–299

    Google Scholar 

  102. Tripathy T, Bhagat RP, Singh RP (2001) The flocculation performance of grafted sodium alginate and other polymeric flocculants in relation to iron ore slime suspension. Eur Polym J 37:125–130

    CAS  Google Scholar 

  103. Sanghi R, Bhattacharya B, Singh V (2007) Seed gum polysaccharides and their grafted co-polymers for the effective coagulation of textile dye solutions. React Funct Polym 67:495–502

    CAS  Google Scholar 

  104. Bajpai UDN, Jain A, Rai S (1990) Grafting of polyacrylamide on to guar gum using K2S2O8 ascorbic acid redox system. J Appl Polym Sci 39:2187–2204

    CAS  Google Scholar 

  105. Singh V, Srivastava V, Pandey M, Sethi R, Sanghi R (2003) Ipomea turpethum seeds: a potential source of commercial gum. Carbohydr Polym 51:357–359

    CAS  Google Scholar 

  106. Singh V, Srivastava A, Tiwari A (2009) Structural elucidation, modification and characterization of seed gum from Cassia javahikai: a nontraditional source of industrial gum. Int J Biol Macromol 45:293–297

    CAS  Google Scholar 

  107. Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382–8395

    CAS  Google Scholar 

  108. Sannino A, Pappadà S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Cross linking of cellulose derivatives and hyaluronic acid with water soluble carbodiimide. Polymer 46:11206–11212

    CAS  Google Scholar 

  109. Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J (2006) Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J Colloid Interface Sci 301:55–62

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, V., Malviya, T., Sanghi, R. (2012). Polysaccharide-Based Macromolecular Materials for Decolorization of Textile Effluents. In: Sharma, S., Sanghi, R. (eds) Advances in Water Treatment and Pollution Prevention. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4204-8_13

Download citation

Publish with us

Policies and ethics