Skip to main content

Foliar Nutrition: Current State of Knowledge and Opportunities

  • Chapter
  • First Online:
Advances in Citrus Nutrition

Abstract

The effectiveness of foliar nutrition is affected by numerous endogenous (related to leaf anatomic structure) as well as exogenous (nutrient concentration, soil type, pH) and environmental factors. Simultaneous application of foliar nutrition with plant growth and development biostimulators enables the increase of crop yield and the improvement of its quality. A significant trend in functional food production is plant biofortification with mineral nutrients – mainly Ca, Mg, microelements, and biogenic trace elements. Foliar nutrition can be used as a method of increasing crop level of these elements. Citrus plants, despite its thick cuticle layer of leaves, respond relatively well to foliar nutrition due to a high number of stomata on the lower leaf surface accompanied by a greater amount of cuticle pores (easing nutrient absorption) than any other epidermal cells. Foliar application treatments, when properly planned and conducted, may stimulate the flowering, increase yield, and improve nutritional and postharvest quality of citrus fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilea O, Soffer Y, Raber D et al (2002) Bonus-NPK – highly concentrated, enriched potassium nitrate, an optimal booster for yield and quality of citrus fruits. Acta Hort 594:461–466

    Google Scholar 

  • Barczak B, Cwojdziński W (1998) Content of macroelements in cucumber fruits sprayed with pesticides and the lupine extract. Sci Papers Agric Univ Poznann 27:11–18 (in Polish with English abstract)

    Google Scholar 

  • Barczak B, Majcherczak E, Kozera W (2007) Effect of lupine extract and nitrogen fertilization on yield quality of celeriac. Veg Crop Res Bull 66:59–68. doi:10.2478/v10032-007-0008-6

    Google Scholar 

  • Basak A, Mikos-Bielak M (2008) The use of some biostimulators on apple and pear trees. In: Sadowski A (ed) Biostimulators in modern agriculture - fruit crops. Editorial House Wiesn Jutra, Warsaw

    Google Scholar 

  • Beck SL, Dunlop RW, Fossey A (2003) Stomatal length and frequency as a measure of ploidy level in black wattle, Acacia mearnsii (de Wild). Bot J Linn Soc 141(2):177–181. doi:10.1046/j.1095-8339.2003.00132.x

    Google Scholar 

  • Berbeć S, Andruszczak S, Łusiak J et al (2003) Effect of foliar application of Atonik and Ekolist on yield and quality of common thyme. Acta Agrophys 85:305–311 (in Polish with English abstract)

    Google Scholar 

  • Biesiada A, Kołota E (1998) Application of multi-element fertilizers for foliar nutrition of celeriac. Fol Univ Agric Stein 72:29–33 (in Polish)

    Google Scholar 

  • Bondada BR, Petracek JP et al (2006) Cuticular penetration characteristics of urea in citrus leaves. J Hort Sci Biotechnol 81(2):219–224

    Google Scholar 

  • Borkowska B (1997) Cytokinins. In: Jankiewicz S (ed) The regulators of plant growth and development: property and function. PWN, Warsaw (in Polish)

    Google Scholar 

  • Breś W (2009) Estimation of nutrient losses from open fertigation systems to soil during horticultural plant cultivation. Pol J Environ Stud 18(3):341–345

    Google Scholar 

  • Breś W (2010) Influence of soilless cultures on soil environment. Ecol Chem Eng A 17(9):1069–1076

    Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303. doi:10.1146/annurev.arplant.50.1.277

    PubMed  CAS  Google Scholar 

  • Caronia A, Gugliuzza G, Inglese P (2010) Influence of L-proline on Citrus sinensis (L.) [‘New Hall’ and ‘Tarocco Scirè’] fruit quality. Acta Hort 884:423–426

    CAS  Google Scholar 

  • Ciha AJ, Brun W (1975) Stomatal size and frequency in soybeans. Crop Sci 15:309–313

    Google Scholar 

  • Coupe SA, Palmer BG, Lake JA et al (2006) Systemic signaling of environmental cues in Arabidopsis leaves. J Exp Bot 57(2):329–341. doi:10.1093/jxb/erj033

    PubMed  CAS  Google Scholar 

  • Crisosto CH, Johnson RS, DeJong T (1997) Orchard factors affecting post-harvest stone fruit quality. Hort Sci 32(5):820–823

    Google Scholar 

  • Crisosto CH, Day KR, Johnson RS et al (2000) Influence of in-season foliar calcium sprays on fruit quality and surface discoloration incidence of peach and nectarines. J Am Pomol Soc 54(3):118–122

    Google Scholar 

  • Cwojdziński W, Barczak B, Polocyn J (1996) The effect of lupine extract on the decrease of nitrate nitrogen in selected vegetables. Zesz Prob Post Nauk Rol 440:45–50 (in Polish with English abstract)

    Google Scholar 

  • Dayod M, Tyerman SD, Leigh RA et al (2010) Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247(3–4):215–231. doi:10.1007/s00709-010-0182-0

    PubMed  CAS  Google Scholar 

  • Dluzniewska P, Gessler A, Kopriva S et al (2006) Exogenous supply of glutamine and active cytokinin to the roots reduces NO -3 uptake rates in poplar. Plant Cell Environ 29:1284–1297. doi:10.1111/j.1365-3040.2006.01507.x

    PubMed  CAS  Google Scholar 

  • Durand N, Briand X, Meyer C (2003) The effect of marine bioactive substances (N PRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiol Plant 119(4):489–493. doi:10.1046/j.1399-3054.2003.00207.x

    CAS  Google Scholar 

  • Eichert T, Burkhardt J, Goldbach HE (2002) Some factors controlling stomatal uptake. Acta Hort 594:85–90

    CAS  Google Scholar 

  • Elmer PAG, Spiersa TM, Wood PN (2007) Effects of pre-harvest foliar calcium sprays on fruit calcium levels and brown rot of peaches. Crop Prot 26(1):11–18. doi:10.1016/j.cropro.2006.03.011

    CAS  Google Scholar 

  • Fageria NK, Barbosa Filho MP, Moreira A et al (2009) Foliar fertilization of crop plants. J Plant Nutr 32:1044–1064. doi:10.1080/01904160902872826

    CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284. doi:10.1023/B:PHOT.0000011962.05991.6c

    CAS  Google Scholar 

  • Fernández V, Del Río V, Abadía J et al (2006) Foliar iron fertilization of peach (Prunus persica (L.) Batsch): effects of iron compounds, surfactants and other adjuvants. Plant Soil 289:239–252. doi:10.1007/s11104-006-9132-1

    Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235. doi:10.1016/S0005-2736(00), 00140-1

    PubMed  CAS  Google Scholar 

  • Forde BG, Cole JA (2003) Nitrate finds a place in the sun. Plant Physiol 131(3):395–400. doi:10.1104/pp. 016139

    PubMed  CAS  Google Scholar 

  • Fornes F, Sánchez-Perales M, Guardiola JL (1995) Effect of a seaweed extract on citrus fruit maturation. Acta Hort 379:75–82

    Google Scholar 

  • Franke W (1961) Ectodesmata and foliar absorption. Am J Bot 48(8):683–691

    Google Scholar 

  • Franke W (1967) Mechanisms of foliar penetration of solutions. Annu Rev Plant Physiol 18:281–300

    CAS  Google Scholar 

  • Franke W (1971) The entry of residues into plants via ectodesmata. Resid Rev 38:81–115

    CAS  Google Scholar 

  • Franke W (1986) The basis of foliar absorption of fertilizers with special regard to the mechanisms. In: Alexander A (ed) Foliar fertilization. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Fritz A (1978) Foliar fertilization – a technique for improved crop production. Acta Hort 84:43–56

    Google Scholar 

  • Gansel X, Muňos S, Tillard P et al (2001) Differential regulation of the NO -3 and NH +4 transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26(2):143–155. doi:10.1046/j.1365-313x.2001.01016.x

    PubMed  CAS  Google Scholar 

  • Gechev T, Gadjev I, Van Breusegem F et al (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59(4):708–714. doi:10.1007/s00018-002-8459-x

    PubMed  CAS  Google Scholar 

  • Gheibi MN, Kholdebarin B, Ghanati F et al (2009) Urease activity in maize (Zea maize L. CV. 704) as affected by nickel and nitrogen sources. Iran J Sci Technol Trans A 33(A4):299–307

    CAS  Google Scholar 

  • Goh CH, Nam HG, Park YS (2003) Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants. Plant J 36(2):240–255. doi:10.1046/j.1365-313X.2003.01872.x

    PubMed  CAS  Google Scholar 

  • Graham JH, Gottwald TR, Riley TD et al (1992) Penetration through leaf stomata and growth of strains of Xanthomonas campestris in citrus cultivars varying in susceptibility to bacterial diseases. Phytopathology 82(11):1319–1325

    Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421. doi:10.1146/annurev-nutr-080508-141143

    PubMed  CAS  Google Scholar 

  • Holloway PJ (1971) The chemical and physical characteristics of leaf surfaces. In: Prece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. N.Y. Academic Press, London

    Google Scholar 

  • Howitt SM, Udvardi MK (2000) Structure, function and regulation of ammonium transporters in plants. Biochim Biophys Acta 1465:152–170. doi:10.1016/S0005-2736(00)00136-X

    PubMed  CAS  Google Scholar 

  • Jabłoński K (2002) The advantages of potato foliar fertilization with microelements. Ziem Pol 2:22–29 (in Polish)

    Google Scholar 

  • Jain A, Srivastava HS (1981) Effect of salicylic acid on nitrate reductase activity in maize seedlings. Physiol Plant 51:339–342. doi:10.1111/j.1399-3054.1981.tb05565.x

    CAS  Google Scholar 

  • Jodełka J, Jankowski K, Ciepiela GA (2003) Estimation of nitrogen applied in foliar form used in system of meadow fertilization. Acta Agrophys 85:339–345

    Google Scholar 

  • Kannan S (2010) Foliar fertilization for sustainable crop production: genetic engineering, biofertilisation, soil quality and organic ­farming. Sustain Agric Rev 4:371–402. doi:10.1007/978-90-481-8741-6_13

    Google Scholar 

  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458. doi:10.1007/BF00016484

    PubMed  CAS  Google Scholar 

  • Kolthoff IM, Sandell EB, Bruckenstein S (1969) Quantitative chemical analysis. Macmillan, London

    Google Scholar 

  • Komosa A (1990) Influence of selected chemical properties of solutions and nutritional status of plants on the efficiency of foliar nutrition of greenhouse tomato. Dissertation, Scientific Papers of the Agricultural University of Poznan, p 210 (in Polish)

    Google Scholar 

  • Koo RCJ (1988) Response of citrus to seaweed-based nutrient sprays. Proc Fla State Hort Sci 101:26–28

    Google Scholar 

  • Kováčik P (1999) Effect of nitrogenous nutrition and sucrose foliar application on yield parameters of radish. Zahrad Hort Sci (Prague) 26:97–102 (in Czech, with English abstract)

    Google Scholar 

  • Krogmeier MJ, McCarty GW, Shogren DR et al (1991) Effect of nickel deficiency in soybeans on the phytotoxicity of foliar applied urea. Plant Soil 135(2):283–286

    CAS  Google Scholar 

  • Kuepper G (2003) Foliar fertilization. ATTRA. https://attra.ncat.org/attra-pub/summaries/summary.php?pub=286

  • Kujawski P (2005) Mineral nutrient uptake depends on climatic conditions. Hasło Ogrod 3:108–112 (in Polish)

    Google Scholar 

  • Liu Q, Zhu Y, Tao H et al (2006) Damage of PS II during senescence of Spirodela polyrrhiza explants under long-day conditions and its prevention by 6-benzyladenine. J Plant Res 119(2):145–152. doi:10.1007/s10265-006-0259-1

    PubMed  CAS  Google Scholar 

  • Machado MA, Astua-Monge G, Targon MLPN et al (2005) Citrus genomics in Brazil (CitEST): experiences and future perspectives. In: Plant & animal genomes XIII conference, Town & Country Convention Center San Diego, January 15–19, 2005. http://www.intl-pag.org/13/abstracts/PAG13_W066.html

  • Magdziak R, Kołodziej B (2003) Effect of foliar fertilizers on the growth and development of American ginseng (Panax quinquefolium L.) in consecutive years of vegetation. Acta Agrophys 85:319–329 (in Polish with English abstract)

    Google Scholar 

  • Malavolta E, Moraes MF (2007) Nickel – from toxic to essential nutrient. Better Crops 91(3):26–27

    Google Scholar 

  • Malavolta E, Leão HC, de Oliveira SC et al (2006) Repartição de nutrientes nas flores, folhas e ramos da laranjeira cultivar Natal. Rev Bras Frutic 28(3):506–511 (in Portuguese with English abstract)

    Google Scholar 

  • Malhotra SS, Hocking D (1976) Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytol 76:227–237

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Masclaux-Daubresse C, Valadier MH, Carrayol E et al (2002) Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco leaves. Plant Cell Environ 25:1451–1462. doi:10.1046/j.1365-3040.2002.00925.x

    CAS  Google Scholar 

  • McFarlane JC, Berry WI (1974) Cation penetration through isolated leaf cuticles. Plant Physiol 53:723–727

    PubMed  CAS  Google Scholar 

  • Meinder H, Mansfield TA (1968) Physiology of stomata. McGraw Hill, New York

    Google Scholar 

  • Michałojć Z, Szewczuk C (2003) Theoretical aspects of foliar nutrition. Acta Agrophys 85:9–17 (in Polish with English abstract)

    Google Scholar 

  • Miguel S, Gutiérrez RM, Larqué SA (2002) Low concentrations of salicylic acid increase nitrate accumulation in roots of Pinus patula. Phyton Int J Exp Bot 51:79–82

    Google Scholar 

  • Mohammady DS (2011) Physiological characters associated with water-stress tolerance under pre anthesis water-stress conditions in wheat. Available online. http://www.shigen.nig.ac.jp/ewis/article/html/17/article.html

  • Mugnai S, Azzarello E, Pandolfi C et al (2008) Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. J Appl Physiol 20(2):177–182. doi:10.1007/s10811-007-9203-6

    CAS  Google Scholar 

  • Nicoulaud BAL, Bloom AJ (1998) Nickel supplements improve growth when foliar urea is the sole nitrogen source for tomato. J Am Soc Hort Sci 123(4):556–559

    CAS  Google Scholar 

  • Norris RF, Bukovac MJ (1972) Effect of pH on penetration of naphthalene acid and naphthaleneacetamide through pear leaf cuticule. Plant Physiol 49(4):615–618

    PubMed  CAS  Google Scholar 

  • Orsel M, Krapp A, Daniel-Vedele F (2002) Analysis of the NRT2 nitrate transporter family in Arabidopsis: Structure and gene expression. Plant Physiol 129:886–896. doi:10.1104/pp. 005280

    PubMed  CAS  Google Scholar 

  • Piskornik Z (1994) Plant physiology for faculties of horticulture part I, 2nd edn. Wydawnictwo AR, Kraków (in Polish)

    Google Scholar 

  • Pompelli MF, Martins SCV, Celin EF et al (2010) What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions? Braz J Biol 70(4):1083–1088. doi:dx.doi.org/10.1590/S1519-69842010000500025

    PubMed  CAS  Google Scholar 

  • Rożek S, Sady W, Kasprzyk A (2000) The influence of foliar nutrition on quantity and quality of carrot field. Sci Pap Agric Univ Cracow 364:159–162 (in Polish)

    Google Scholar 

  • Rydz A (2001) The effect of foliar nutrition urea on yield quality of broccoli cv. Lord F1. Veg Crops Res Bull 54:61–64

    Google Scholar 

  • Santana LM Gabriel R, Morales-Payan JP et al (2006) Effects of biostimulants on nursery growth of orange budded on volkamer lemon and swingle citrumelo. In: Proceedings of the 33rd Annual Meeting of the Plant Growth Regulation Society of America, Quebec City, July 2006. Plant Growth Regulation Society of America, LaGrange, pp 217–219

    Google Scholar 

  • Schletz R (2008) Stomata densities of developing and mature leaves of geraniums. ESSAI 6(1):129–132. doi: http://dc.cod.edu/essai/vol6/iss1/42

    Google Scholar 

  • Schönherr J (1976) Water permeability of isolated cuticular membranes: the effect of pH and cations on diffusion, hydrodynamic permeability and size of polar pores in the cutin matrix. Planta 128(2):113–126. doi:10.1007/BF00390312

    Google Scholar 

  • Schönherr J (2001) Cuticular penetration of calcium salts: effect of humidity, anions and adjuvants. J Plant Nutr 164:225–231. doi:10.1002/1522-2624(200104)

    Google Scholar 

  • Schönherr J (2002) Foliar nutrition using inorganic salts: laws of cuticular penetration. Acta Hort 594:77–84

    Google Scholar 

  • Schönherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 57(11):2471–2491. doi:10.1093/jxb/erj217

    PubMed  Google Scholar 

  • Schönherr J, Luber M (2001) Cuticular penetration of potassium salts: effect of humidity, anions and temperature. Plant Soil 236(1):117–122. doi:10.1023/A:1011976727078

    Google Scholar 

  • Shakya R, Sturm A (1998) Characterization of source- and sink-specific sucrose/H+ symporters from carrot. Plant Physiol 118:1473–1480. doi:10.1104/pp. 118.4.1473

    PubMed  CAS  Google Scholar 

  • Smoleń S, Ledwożyw-Smoleń I (2011) Foliar nutrition of vegetables. Hasło Ogrod 3:32–37 (in Polish)

    Google Scholar 

  • Smoleń S, Sady W (2008a) Foliar nutrition of carrot – the optimal time and products? Part I. Warzywa 5:22–28 (in Polish)

    Google Scholar 

  • Smoleń S, Sady W (2008b) Foliar nutrition of carrot – the optimal time and products? Part II. Warzywa 6:32–35 (in Polish)

    Google Scholar 

  • Smoleń S, Sady W (2008c) Effect of various nitrogen fertilization and foliar nutrition regimes on carrot (Daucus carota L.) yield. J Hort Sci Biotechnol 83(4):427–434

    Google Scholar 

  • Smoleń and Sady (2012) The effect of foliar application of urea, molybdenum, benzyladenine, sucrose and salicylic acid on yield, nitrogen metabolism of radish plants and quality of edible roots. J Plant Nutr (in print). doi:10.1080/01904167.2012.676125

    Google Scholar 

  • Smoleń S, Szura A (2008a) Compounds improving plant growth (part I) Growth regulators and resistance stimulators. Hasło Ogrod 5:12–16 (in Polish)

    Google Scholar 

  • Smoleń S, Szura A (2008b) Compounds improving plant growth (part II). Growth stimulators and modern fertilizers. Hasło Ogrod 6:12–14 (in Polish)

    Google Scholar 

  • Smoleń S, Sady W, Suppl (2009) The influence of nitrogen fertilization and Pentakeep V application on contents of nitrates in carrot. Acta Hort et Regiotec 12:221–223

    Google Scholar 

  • Smoleń S, Sady W, Wojciechowska R (2010) The effect of foliar nutrition with nitrogen, molybdenum, sucrose and benzyladenine on the nitrogen metabolism in carrot plants. Veg Crop Res Bull 72:83–92. doi:10.2478/v10032-010-0008-9

    Google Scholar 

  • Spiegel-Roy P, Goldschmidt EE (1996) Biology of citrus. Cambridge University Press, New York

    Google Scholar 

  • Srivastava AK, Singh S (2003) Foliar fertilization in citrus – a review. Agric Rev 24(4):250–264

    Google Scholar 

  • Starck JR (1997) Cultivation and fertilization of horticultural plants, 3rd edn. Państwowe Wydawnictwo Rolnicze i Leśne, Warszaw

    Google Scholar 

  • Starck Z (2003) Transport and distribution of nutrient compounds in plants. SGGW Publisher, Warsaw (in Polish)

    Google Scholar 

  • Sugier D (2003) Influence of the method plantation setting and foliage feeding on root yield and inulin content of common dandelion (Taraxacum officinale WEB). Acta Agrophys 85:331–337 (in Polish with English abstract)

    Google Scholar 

  • Szewczuk C, Michałojć Z (2003a) Preface – foliar fertilization of plants. Acta Agrophys 85:7–8 (in Polish)

    Google Scholar 

  • Szewczuk C, Michałojć Z (2003b) Practical aspects of foliar fertilization. Acta Agrophys 85:19–29 (in Polish with English abstract)

    Google Scholar 

  • Szewczuk C, Sugier D, Studzińska-Jaksim P (2003) Influence of foliar application of fertilization on hop cones yield and quality. Acta Agrophys 85:297–304

    Google Scholar 

  • Tischner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23:1005–1024. doi:10.1046/j.1365-3040.2000.00595.x

    CAS  Google Scholar 

  • Weaver RJ (1972) Plant growth substances in agriculture. WH Freeman and Company, San Francisco

    Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    PubMed  CAS  Google Scholar 

  • Wierzbińska J (2009) Effect of foliar application of nutrients combined with phytohormones and organic acids on yield quantity and biological quality of carrot (Daucus carota L.) yield. Dissertation. University of Agriculture in Krakow (in Polish with English abstract)

    Google Scholar 

  • Williams CMJ, Maier NA, Bartlett L (2004) Effect of molybdenum foliar sprays on yield, berry size, seed formation, and petiolar nutrient composition of “Merlot” grapevines pages. J Plant Nutr 27:1891–1916. doi:10.1081/PLN-200030023

    CAS  Google Scholar 

  • Wittwer SH, Teubner FG (1959) Foliar absorption of mineral nutrients. Annu Rev Plant Physiol 10:13–27

    CAS  Google Scholar 

  • Wojciechowska R, Rożek S, Rydz A (2005) Broccoli yield and its quality in spring growing cycle as dependent on nitrogen fertilization. Folia Hort 17(2):141–152

    Google Scholar 

  • Wójcik P (2004) Uptake of mineral nutrients from foliar fertilization. J Fruit Ornam Plant Res (special ed) 12:201–218

    Google Scholar 

  • Xie S, Zhang Q (2004) Kinetics of uptake and export of foliar-applied radio-labeled phosphorus by leaf and fruit rind of Satsuma mandarin during fruit development. J Plant Nutr 27(2):223–237. doi:10.1081/PLN-120027651

    CAS  Google Scholar 

  • Yamada Y, Wittwer SH, Bukovac MJ (1964) Penetration of ions through isolated cuticules. Plant Physiol 39(1):28–32

    PubMed  CAS  Google Scholar 

  • Yaronskaya E, Vershilovskaya I, Poers Y et al (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709. doi:10.1007/s00425-006-0249-5

    PubMed  CAS  Google Scholar 

  • Yu X, Sukumaran S, Marton L (1998) Differential expression of the Arabidopsis Nia1 and Nia2 genes. Plant Physiol 116:1091–1096. doi:10.1104/pp. 116.3.1091

    PubMed  CAS  Google Scholar 

  • Zamarreño A, Cantera RG, Garcia-Mina JM (1997) Extraction and determination of glycinebetaine in liquid fertilizers. J Agric Food Chem 45(3):774–776. doi:10.1021/jf960342h

    Google Scholar 

  • Zekri M, England G (2010) Foliar feeding and SAR for citrus trees. University of Florida, http://citrusagents.ifas.ufl.edu/archived_presentations/fall_prg2010/Citrus%20Agents%20Web%20Site%20-%20Nutritional.pdf

Download references

Acknowledgment 

I would like to sincerely thank my wife Iwona for her invaluable help with gathering the necessary literature and the preparation of English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwester Smoleń .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Smoleń, S. (2012). Foliar Nutrition: Current State of Knowledge and Opportunities. In: Srivastava, A. (eds) Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_4

Download citation

Publish with us

Policies and ethics