Skip to main content

Carbon Cycling in the Amazon

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

Brazil is the fifth largest country in the world by area (8,550,000 km2), and represents one of the ten largest economies. The country has a diversified middle-income economy with wide variations in development levels and mature manufacturing, mining and agriculture sectors. Almost 60% of the Brazil’s territory is occupied by the Legal Amazon or also known as Brazilian Amazon. In recent decades, human settlements in the Brazilian Amazon have grown at an exponential rate. Its population grew 130% since the 1970s, reaching about 19.5 in 2000 (last census in Brazil). The exponential settlement rate and associated land cover changes have caused impacts on environmental services such as biodiversity, carbon (C) storage and regulation of the water cycle. Therefore, the Amazon nations, particularly Brazil, face one of the grand challenges for society in the twenty-first century – how to foster economic growth while protecting and improving the environment. This is a complex challenge that requires a variety of inputs on socio-economic and scientific issues. This chapter addresses part of this rather complex issue, focusing more on the scenarios of land-use-changes in Brazil that have direct implications on environmental and socio-economic aspects for the Brazilian Amazon. Finally, this chapter aims to estimate, using data from the literature, the effects of some land use change scenarios on soil C sequestration for the Brazilian Amazon and the entire area of the Amazon Tropical Rain Forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AU:

animal units = the standard measure of an animal unit is a 1,000-pound beef cow

C:

carbon

CO2 :

carbon dioxide

CEC:

cation exchange capacity

GHGs:

greenhouse gases

Mha:

million hectare

NEE:

net ecosystem exchange

SOC:

soil organic carbon

TRF:

Tropical Rain Forest

References

  • Anderson A (1990) Deforestation in Amazônia: dynamics, causes, and alternatives. In: Anderson AB (ed) Alternatives to deforestation: steps towards sustainable use of the Amazon rain forest. Colombia University Press, New York

    Google Scholar 

  • Bernoux M, Arrouays D, Cerri CC et al (1998) Modeling vertical distribution of carbon in Oxisols of the western Brazilian Amazon. Soil Sci 163:941–951

    Article  CAS  Google Scholar 

  • Bernoux M, Graça PMA, Cerri CC et al (2001) Carbon storage in biomass and soils. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, pp 84–105

    Google Scholar 

  • Bernoux M, Carvalho MCS, Volkoff B et al (2002) Brazil’s soil carbon stocks. Soil Sci Soc Am J 66:888–896

    Article  CAS  Google Scholar 

  • Bolin B, Sukumar R (2000) Global perspective. In: Watson RT, Noble IR, Bolin B et al (eds) Land use, land use change, and forestry. Cambridge University Press, Cambridge, pp 23–51

    Google Scholar 

  • Bonde TA, Christensen BT, Cerri CC (1992) Dynamics of soil organic matter as reflected by natural 13C abundance in particle size fractions of forested and cultivated Oxisols. Soil Biol Biochem 24:275–277

    Article  CAS  Google Scholar 

  • Buschbacher R, Uhl C, Serrão AS (1988) Abandoned pastures in eastern Amazonia. II. Nutrient stocks in the soil and vegetation. J Ecol 76:682–699

    Article  Google Scholar 

  • Brasil (2009) Ministério da Agricultura, Abastecimento e Agropecuária. http://www.agricultura.gov.br/. Visited May 2009

  • Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32

    Article  Google Scholar 

  • Camarão AP, Souza Filho AP (1999) Pastagens nativas da Amazonia. Embrapa Amazonia Ocidental, Belem, p 150

    Google Scholar 

  • Cerri CC, Volkoff B, Andreux F (1991) Nature and behavior of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus. For Ecol Manag 38:247–257

    Article  Google Scholar 

  • Cerri CC, Bernoux M, Feigl BJ et al (1999) Carbon dynamics in forest and pasture soils of the Brazilian Amazon. Workshop on tropical soils. Academia Brasileira de Ciências. Rio de Janeiro, pp 65–72

    Google Scholar 

  • Cerri CC, Bernoux M, Arrouays D (2000) Carbon stocks in soils of the Brazilian Amazon. In: Lal R, Kimble J, Follet R, Stewart BA (eds) Global climate change and tropical ecosystems, Advances in soil science. CRC Press, Boca Raton, pp 33–50

    Google Scholar 

  • Cerri CEP, Coleman K, Jenkinson DS et al (2003) Soil carbon dynamics at Nova Vida Ranch, Amazon, Brazil. Soil Sci Soc Am J 67:1879–1887

    Article  CAS  Google Scholar 

  • Chambers JQ, Higuchi N, Tribuzy ES et al (2001) Carbon sink for a century. Nature 410:429

    Article  PubMed  CAS  Google Scholar 

  • Choné T, Andreux F, Correa JC et al (1991) Changes in organic matter in an oxisol from the central Amazonian forest during eight years as pasture, determined by 13C composition. In: Berthelin J (ed) Diversity of environmental biogeochemistry. Elsevier, New York, pp 307–405

    Google Scholar 

  • Cox PM, Betts RA, Jones CD et al (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  PubMed  CAS  Google Scholar 

  • Cuevas E (2001) Soil versus biological controls on nutrient cycling in terra firme forests. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, pp 53–67

    Google Scholar 

  • Desjardins T, Andreux F, Volkoff B et al (1994) Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia. Geoderma 61:103–118

    Article  Google Scholar 

  • Dias-Filho MB, Davidson EA, Carvalho CJR (2001) Linking biogeochemical cycles to cattle pasture management and sustainability in the Amazon basin. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, pp 84–105

    Google Scholar 

  • ECCM (2002) Carbon sinks in the Amazon – the evidence. Produced for the World Land Trust by The Edinburgh Centre for Carbon Management. October 2002. www.worldlandtrust.org/carbon/carbonfigures.pdf

  • Falesi IC (1976) Ecosistema de pastagem cultivada na Amazônia Brasileira. Centro de Pesquisa Agropecuária do Trópico Úmido. Empresa Brasileira de Pesquisa Agropecuária. Boletim Técnico 1. p 193

    Google Scholar 

  • Fan SM, Wofsy SC, Bakwin PS et al (1990) Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest. J Geophys Res Atmos 95:16851–16864

    Article  CAS  Google Scholar 

  • Fearnside PM (1985) Agriculture in Amazonia. In: Prance GT, Lovejoy TE (eds) Key environments: Amazonia. Pergamon, New York, pp 393–418

    Google Scholar 

  • Fearnside PM (1996) Human carrying capacity estimation in the Brazilian Amazon: research requirements to provide a basis for sustainable development. In: Lieberei R, Retsdorff G, Machado AD (eds) Interdisciplinary research on the conservation and sustainable use of the Amazonian Rain Forest and its information requirements. Report on a workshop held in Brasilia, 20–22 Nov 1995, pp 274–291

    Google Scholar 

  • Fearnside PM (1999) Greenhouse gas emissions from land-use change in Brazil’s Amazon region. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. CRC Press, Boca Raton, pp 231–249

    Google Scholar 

  • Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decompositions and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Chang 46:115–158

    Article  CAS  Google Scholar 

  • Fearnside PM, Barbosa RI (1998) Soil carbon changes from conversion of forest to pasture in Brazilian Amazon. For Ecol Manag 108:147–166

    Article  Google Scholar 

  • Feldpausch T, Rondon M, Fernandes E et al (2004) Carbon and nutrient accumulation in secondary forest regenerating from degraded pastures in Central Amazonia. Ecol Appl 14:164–176

    Article  Google Scholar 

  • Fujisaka S, White D (1998) Pasture or permanent crops after slash-and-burn cultivation? Land-use choice in three Amazon colonies. Agrofor Syst 42:45–59

    Article  Google Scholar 

  • Fujisaka S, Bell W, Thomas N et al (1996) Slash-and-burn agriculture, conversion to pasture, and deforestation in two Brazilian Amazon colonies. Agric Ecosyst Environ 59:115–130

    Article  Google Scholar 

  • Grace J, Lloyd J, McIntyre J et al (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992 to 1993. Science 270:778–780

    Article  CAS  Google Scholar 

  • Higuchi N, der Santos J, Ribeiro RJ et al (1997) Crescimento e incremento de uma floresta amazônica de terra-firme manejada experimentalmente. In: Higuchi N, Ferraz JBS, Antony L et al (eds) Bionte: biomassa e nutrientes florestais. Final report. Instituto Nacional de Pesquisa da Amazônia (INPA), Manaus, pp 87–132

    Google Scholar 

  • Homma AKO (1994) Amazônia: desenvolvimento econômico e questão ambiental. In: Vilhena EF, Santos LC (eds) Agricultura e meio ambiente. UFV-NEPEMA, Viçosa, pp 25–37

    Google Scholar 

  • Houghton RA (1991) Tropical deforestation and atmospheric carbon-dioxide. Clim Chang 19:99–118

    Article  CAS  Google Scholar 

  • Houghton RA (1997) Terrestrial carbon storage: global lessons for Amazonian research. Ciência e Cultura. J Braz Assoc Adv Sci 49:58–72

    CAS  Google Scholar 

  • Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Glob Chang Biol 9:500–509

    Article  Google Scholar 

  • Houghton RA, Skole DL, Nobre CA et al (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403:301–304

    Article  PubMed  CAS  Google Scholar 

  • IBGE (2005) Instituto Brasileiro de Geografia e Estatística. Available at http://www.ibge.com.br

  • IBGE (2007) Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2006: Resultados Preliminares. IBGE, Rio de Janeiro, pp 1–146

    Google Scholar 

  • IBGE (2011) Instituto Brasileiro de Geografia e Estatística. Available at http://www.ibge.gov.br/paisesat/

  • INPE (2004) Instituto Nacional de Pesquisas Espaciais. Amazônia: desflorestamento 2002–2003. São José dos Campos, SP

    Google Scholar 

  • Jacomine PKT, Camargo MN (1996) Classificação pedológica nacional em vigor. In: Alvarez VH, Fontes LEF, Fontes MPF (eds) Solos nos grandes domínios morfoclimáticos do Brasil e o desenvolvimento sustentado. SBCS-UFV, Viçosa, pp 675–689

    Google Scholar 

  • Keller M, Melillo JM, deMello WZ (1997) Trace gas emissions from ecosystems of the Amazon basin. Cienc Cult J Braz Assoc Adv Sci 49:87–97

    CAS  Google Scholar 

  • Kitamura PC (1994) A Amazônia e o desenvolvimento sustentável. Embrapa, Brasília, p 182

    Google Scholar 

  • Lal R, Kimble JM (1999) What do we know and what needs to be known and implemented for C sequestration in tropical ecosystems. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. CRC Press, Boca Raton, pp 417–431

    Google Scholar 

  • Laurance WF, Cochrane MA, Bergen S et al (2001a) The future of the Brazilian Amazon. Science 291:438–439

    Article  PubMed  CAS  Google Scholar 

  • Laurance WF, Cochrane MA, Bergen S et al (2001b). Re: the future of the Brazilian Amazon. Science online, www.sciencemag.org/cgi/eletters. Visited Feb 2001

  • Luizão RC, Bonde TA, Rosswall T (1992) Seasonal variation of soil microbial biomass: the effect of clearfelling a tropical rainforest and establishment of pasture in the central Amazon. Soil Biol Biochem 24:805–813

    Article  Google Scholar 

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337

    Article  PubMed  Google Scholar 

  • Malhi Y, Nobre A, Grace J et al (1998) Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res 103:593–612

    Article  Google Scholar 

  • Marengo JÁ, Nobre CA (2001) General characteristics and variability of climate in the Amazon Basin and its links to the global climate system. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, pp 17–41

    Google Scholar 

  • McCaffery K, Rondon M, Gallardo J et al (2000) Carbon and nutrient stocks in agroforestry systems and secondary forest in the Central Amazon. In: Proceedings of the second scientific conference of the LBA project, Atlanta

    Google Scholar 

  • McClain ME, Victoria RL, Richey JE (2001) The biogeochemistry of the Amazon basin. Oxford University Press, New York, p236

    Google Scholar 

  • Melack JM, Forsberg BR (2001) Biogeochemistry of Amazon Floodplain lakes and associated wetlands. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, pp 235–274

    Google Scholar 

  • Meyers N (1981) Conversion rates in tropical moist forests. In: Mergen F (ed) Tropical forests utilization and conservation. Yale University, New Haven, pp 48–66

    Google Scholar 

  • Moraes JFL, Cerri CC, Melillo JM et al (1995) Soil carbon stocks of the Brazilian Amazon basin. Soil Sci Soc Am J 59:244–247

    Article  CAS  Google Scholar 

  • Moraes JFL, Volkoff B, Cerri CC et al (1996) Soil properties under Amazon forest change due to pasture installation in Rondônia, Brazil. Geoderma 70:63–81

    Article  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM et al (2010) Chapter Five – Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Neill C, Davidson EA (1999) Soil carbon accumulation for loss following deforestation for pasture in the Brazilian Amazon. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. CRC Press, Boca Raton, pp 197–211

    Google Scholar 

  • Neill C, Cerri CC, Melillo J et al (1997) Stocks and dynamics of soil carbon following deforestation for pasture in Rondonia. In: Lal R, Kimble JM, Follett RF et al (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, pp 9–28

    Google Scholar 

  • Nepstad D, Moutinho PRS, Markewitz D (2001) The recovery of biomass, nutrient stocks, and deep-soil functions in secondary forests. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, pp 139–155

    Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA et al (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714

    Article  CAS  Google Scholar 

  • Pearce DW, Brown K (1994) Saving the world’s tropical forests. In: Brown K, Pearce DW (eds) The causes of tropical deforestation: the economic and statistical analysis of factors giving rise to the loss of the tropical forests. University College London Press Limited, London, pp 1–26

    Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    Article  PubMed  CAS  Google Scholar 

  • Phillips OL, Aragão LEOC, Lewis SL et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347

    Article  PubMed  CAS  Google Scholar 

  • Pires JM, Prance GT (1986) The vegetation types of the Brazilian Amazon. In: Prance GT, Lovejoy TM (eds) Amazonia. Pergamon Press, Oxford, pp 109–115

    Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  • Prentice IC, Lloyd J (1998) C-quest in the Amazon Basin. Nature 396:619–620

    Article  CAS  Google Scholar 

  • Rondon M, Fernandes E, Lima R et al (2000) Carbon storage in soils from degraded pastures and agroforestry systems in Central Amazonia: The role of charcoal. In: Proceedings of the second scientific meeting of the LBA project, Atlanta

    Google Scholar 

  • Schroth G, D’Angelo SA, Teixeira WG et al (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. For Ecol Manag 163:131–150

    Article  Google Scholar 

  • Serrão EAS, Toledo JM (1990) The search for sustainability in Amazonian pastures. In: Anderson AB (ed) Alternatives to deforestation: steps towards sustainable utilization of Amazon forests. Columbia University Press, New York, pp 195–214

    Google Scholar 

  • Serrão EAS, Falesi IC, da Veiga JB et al (1979) Productivity of cultivated pastures on low fertility soils of the Amazon Basin. In: Sanchez PA, Tergas LE (eds) Pasture production in acid soils of the tropics. Centro Internacional de Agricultura Tropical, Cali, pp 195–225

    Google Scholar 

  • Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon satellite data from 1978 to 1988. Science 260:1905–1910

    Article  PubMed  CAS  Google Scholar 

  • Tian H, Mellilo JM, Kicklighter DW et al (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667

    Article  CAS  Google Scholar 

  • Trumbore SE, Davidson EA, Camargo PB et al (1995) Below-ground cycling of carbon in forest and pastures of eastern Amazonia. Glob Biogeochem Cycle 9:515–528

    Article  CAS  Google Scholar 

  • Tucker JM, Brondizio ES, Moran EF (1998) Rates of forest regrowth in Eastern Amazonia: a comparison of Altamira and Bragantina regions, Para State, Brazil. Interciencia 23:64–73

    Google Scholar 

  • Uhl C, Buschbacher R, Serrão EAS (1988) Abandoned pastures in Eastern Amazonia. I. Patterns of plant sucession. J Ecol 76:663–681

    Article  Google Scholar 

  • Watson RT, Noble IR, Bolin B et al (2000) Land use, land use change, and forestry. A special report of the IPCC. Cambridge University Press, Cambridge, p 377

    Google Scholar 

  • Woomer PL, Palm CA, Alegre J et al (1999) Slash-and-burn effects on carbon stocks in the humid tropics. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. CRC Press, Boca Raton, pp 99–115

    Google Scholar 

Download references

Acknowledgements

Researches that led to this study were supported partly by grants and fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Comité Français d’Évaluation de la Coopération Universitaire et Scientifique avec le Brésil (COFECUB), Fundação de Amparo a Pesquisa do Estado de São Paulo (Fapesp) and support from University of São Paulo (USP-Brazil) and the Institut de Recherche pour le Développement (IRD-France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Clemente Cerri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cerri, C.C., Bernoux, M., Feigl, B.J., Cerri, C.E.P. (2012). Carbon Cycling in the Amazon. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_12

Download citation

Publish with us

Policies and ethics