Skip to main content

Structure of Complex I

  • Chapter
  • First Online:
A Structural Perspective on Respiratory Complex I

Abstract

Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, varying in size from 0.5 to 1 MDa, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we determined the structure of the hydrophilic domain in several redox states. It established the pathway for electron transfer from NADH to quinone via seven Fe-S clusters. Recently, we solved the structure of 6 out of 7 membrane domain subunits and described the architecture the entire bacterial complex I. This progress in structural characterization of the enzyme finally allows us to begin to understand the mechanism of this large molecular machine. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarneh B, Vik SB (2003) Mutagenesis of subunit N of the Escherichia coli complex I. Identification of the initiation codon and the sensitivity of mutants to decylubiquinone. Biochemistry 42:4800–4808

    Article  PubMed  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  • Belevich I, Gorbikova E, Belevich NP, Rauhamaki V, Wikstrom M, Verkhovsky MI (2010) Initiation of the proton pump of cytochrome c oxidase. Proc Natl Acad Sci USA 107:18469–18474

    Article  PubMed  CAS  Google Scholar 

  • Berrisford JM, Sazanov LA (2009) Structural basis for the mechanism of respiratory complex I. J Biol Chem 284:29773–29783

    Article  PubMed  CAS  Google Scholar 

  • Berrisford JM, Thompson CJ, Sazanov LA (2008) Chemical and NADH-induced, ROS-dependent, cross-linking between subunits of complex I from Escherichia coli and Thermus thermophilus. Biochemistry 47:10262–10270

    Article  PubMed  CAS  Google Scholar 

  • Birrell JA, Hirst J (2010) Truncation of subunit ND2 disrupts the threefold symmetry of the antiporter-like subunits in complex I from higher metazoans. FEBS Lett 584:4247–4252

    Article  PubMed  CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    Article  PubMed  CAS  Google Scholar 

  • Brandt U (2011) A two-state stabilization-change mechanism for proton-pumping complex I. Biochim Biophys Acta 1807:1364–1369

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727

    Article  PubMed  CAS  Google Scholar 

  • Chartron J, Carroll KS, Shiau C, Gao H, Leary JA, Bertozzi CR, Stout CD (2006) Substrate recognition, protein dynamics, and iron-sulfur cluster in Pseudomonas aeruginosa adenosine 5′-phosphosulfate reductase. J Mol Biol 364:152–169

    Article  PubMed  CAS  Google Scholar 

  • Clason T, Ruiz T, Schagger H, Peng G, Zickermann V, Brandt U, Michel H, Radermacher M (2010) The structure of eukaryotic and prokaryotic complex I. J Struct Biol 169:81–88

    Article  PubMed  CAS  Google Scholar 

  • Cooley RB, Arp DJ, Karplus PA (2010) Evolutionary origin of a secondary structure: pi-helices as cryptic but widespread insertional variations of alpha-helices that enhance protein functionality. J Mol Biol 404:232–246

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  PubMed  CAS  Google Scholar 

  • Drose S, Zwicker K, Brandt U (2002) Full recovery of the NADH:ubiquinone activity of complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica by the addition of phospholipids. Biochim Biophys Acta 1556:65–72

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Sazanov LA (2011a) Respiratory complex I: ‘steam engine’ of the cell? Curr Opin Struct Biol 21:532–540

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Sazanov LA (2011b) Structure of the membrane domain of respiratory complex I. Nature 476:414–420

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    Article  PubMed  CAS  Google Scholar 

  • Euro L, Belevich G, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2008) Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1777:1166–1172

    Article  PubMed  CAS  Google Scholar 

  • Fisher N, Rich PR (2000) A motif for quinone binding sites in respiratory and photosynthetic systems. J Mol Biol 296:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T (2001) Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33:169–177

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Xie T, Yu L, Hesterberg M, Scheide D, Friedrich T, Yu CA (2003) The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J Biol Chem 278:25731–25737

    Article  PubMed  CAS  Google Scholar 

  • Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O (2011) A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 7:310–318

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Stuchebrukhov AA (2010) Electron tunneling in respiratory complex I. Proc Natl Acad Sci USA 107:19157–19162

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe P, Sazanov LA (2005) Organization of iron-sulfur clusters in respiratory complex I. Science 309:771–774

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe P, Carroll J, Sazanov LA (2006) Identification of a novel subunit of respiratory complex I from Thermus thermophilus. Biochemistry 45:4413–4420

    Article  PubMed  CAS  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    Article  PubMed  CAS  Google Scholar 

  • Kao MC, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2005) Characterization of the membrane domain subunit NuoK (ND4L) of the NADH-quinone oxidoreductase from Escherichia coli. Biochemistry 44:9545–9554

    Article  PubMed  CAS  Google Scholar 

  • Kervinen M, Patsi J, Finel M, Hassinen IE (2004) A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochemistry 43:773–781

    Article  PubMed  CAS  Google Scholar 

  • Kleywegt GJ, Jones TA (1994) Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr 50:178–185

    Article  PubMed  CAS  Google Scholar 

  • Kotlyar AB, Sled VD, Burbaev DS, Moroz IA, Vinogradov AD (1990) Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett 264:17–20

    Article  PubMed  CAS  Google Scholar 

  • Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T (1995) Isolation and characterization of the proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli. Eur J Biochem 230:538–548

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Hagerhall C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556:121–132

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Hagerhall C (2003) The ‘antiporter module’ of respiratory chain complex I includes the MrpC/NuoK subunit – a revision of the modular evolution scheme. FEBS Lett 549:7–13

    Article  PubMed  CAS  Google Scholar 

  • Michel J, Deleon-Rangel J, Zhu S, Van Ree K, Vik SB (2011) Mutagenesis of the L, M, and N subunits of complex I from Escherichia coli indicates a common role in function. PLoS One 6:e17420

    Article  PubMed  CAS  Google Scholar 

  • Moparthi VK, Hagerhall C (2011) The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J Mol Evol 72:484–497

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Sakamoto K, Matsuno-Yagi A, Miyoshi H, Yagi T (2003) The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry 42:746–754

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Han H, Matsuno-Yagi A, Keinan E, Sinha SC, Yagi T, Ohnishi T (2010a) The ND2 subunit is labeled by a photoaffinity analogue of asimicin, a potent complex I inhibitor. FEBS Lett 584:883–888

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Kao MC, Chen H, Sinha SC, Yagi T, Ohnishi T (2010b) The membrane subunit NuoL (ND5) is involved in the indirect proton pumping mechanism of Escherichia coli complex I. J Biol Chem 285:39070–39078

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T (1998) Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364:186–206

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi ST, Salerno JC, Ohnishi T (2010a) Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I). Biochim Biophys Acta 1797:1891–1893

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Nakamaru-Ogiso E, Ohnishi ST (2010b) A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I). FEBS Lett 584:4131–4137

    Article  PubMed  CAS  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    Article  PubMed  CAS  Google Scholar 

  • Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7:316

    Article  PubMed  CAS  Google Scholar 

  • Roessler MM, King MS, Robinson AJ, Armstrong FA, Harmer J, Hirst J (2010) Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron–electron resonance. Proc Natl Acad Sci USA 107:1930–1935

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA (2007) Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46:2275–2288

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (1998) Human complex I defects in neurodegenerative diseases. Biochim Biophys Acta 1364:261–270

    Article  PubMed  CAS  Google Scholar 

  • Screpanti E, Hunte C (2007) Discontinuous membrane helices in transport proteins and their correlation with function. J Struct Biol 159:261–267

    Article  PubMed  CAS  Google Scholar 

  • Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E (2009) Structure and mechanism of a Na+-independent amino acid transporter. Science 325:1010–1014

    Article  PubMed  CAS  Google Scholar 

  • Shinzawa-Itoh K, Seiyama J, Terada H, Nakatsubo R, Naoki K, Nakashima Y, Yoshikawa S (2010) Bovine heart NADH-ubiquinone oxidoreductase contains one molecule of ubiquinone with ten isoprene units as one of the cofactors. Biochemistry 49:487–492

    Article  PubMed  CAS  Google Scholar 

  • Sled VD, Rudnitzky NI, Hatefi Y, Ohnishi T (1994) Thermodynamic analysis of flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I). Biochemistry 33:10069–10075

    Article  PubMed  CAS  Google Scholar 

  • Steimle S, Bajzath C, Dorner K, Schulte M, Bothe V, Friedrich T (2011) Role of subunit NuoL for proton translocation by respiratory complex I. Biochemistry 50:3386–3393

    Article  PubMed  CAS  Google Scholar 

  • Torres-Bacete J, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2007) Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: conserved charged residues essential for energy-coupled activities. J Biol Chem 282:36914–36922

    Article  PubMed  CAS  Google Scholar 

  • Torres-Bacete J, Sinha PK, Castro-Guerrero N, Matsuno-Yagi A, Yagi T (2009) Features of subunit NuoM (ND4) in Escherichia coli NDH-1: topology and implication of conserved Glu144 for coupling site 1. J Biol Chem 284:33062–33069

    Article  PubMed  CAS  Google Scholar 

  • Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T (2011) Structural contribution of the C-terminal segments of NuoL (ND5) and NuoM (ND4) subunits of complex I from E. coli. J Biol Chem 286:34007–34014

    Article  PubMed  CAS  Google Scholar 

  • Verkhovskaya ML, Belevich N, Euro L, Wikstrom M, Verkhovsky MI (2008) Real-time electron transfer in respiratory complex I. Proc Natl Acad Sci USA 105:3763–3767

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  • Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Q Rev Biophys 43:65–158

    Article  PubMed  CAS  Google Scholar 

  • Walker JE (1992) The NADH – ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25:253–324

    Article  PubMed  CAS  Google Scholar 

  • Yagi T, Matsuno-Yagi A (2003) The proton-translocating NADH-Quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42:2266–2274

    Article  PubMed  CAS  Google Scholar 

  • Yip CY, Harbour ME, Jayawardena K, Fearnley IM, Sazanov LA (2011) Evolution of respiratory complex I: “supernumerary” subunits are present in the alpha-proteobacterial enzyme. J Biol Chem 286:5023–5033

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Sazanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Efremov, R.G., Sazanov, L. (2012). Structure of Complex I. In: Sazanov, L. (eds) A Structural Perspective on Respiratory Complex I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4138-6_1

Download citation

Publish with us

Policies and ethics