Skip to main content

Evaluations and Bounds on Elastic Moduli of Heterogeneous Materials

  • Chapter
  • First Online:
Micromechanics of Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 186))

  • 4473 Accesses

Abstract

This chapter is concerned with composites and polycrystals, consisting of two or more distinct phases that have known stiffnesses L r defined in the fixed overall coordinate system of a representative volume V. Phase volume fractions C r \( \Sigma_{{r = 1}}^n\,{c_r} = 1, \) are no longer small, hence evaluation of both overall properties and local fields must reflect interactions between individual phase volumes. Spatial distribution of the phases in V is statistically homogeneous, as described in Sect. 3.2.2, and perfect bonding is assumed at all interfaces. Of interest are derivations of upper and lower bounds on the overall stiffness \( {L} = {{L}^{\text{T}}} \) and compliance \( {M} = {{L}^{{ - 1}}} \) of the aggregate, and of estimates of phase volume averages of strain and stress fields, caused in the heterogeneous system by application of uniform overall strain \( {{\varepsilon }^0} \) or stress \( {{\sigma }^0} \). Those are sought in terms of known volume fractions, elastic moduli, shape and alignment of the constituent phases, Sects. 6.1 and 6.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accorsi, M. L., & Nemat-Nasser, S. (1986). Bounds on the overall elastic and instantaneous elastoplastic moduli of periodic composites. Mechanics of Materials, 5, 209–220.

    Article  Google Scholar 

  • Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (2000). Metal foams. A design guide. Boston: Butterworth Heinemann.

    Google Scholar 

  • Behrens, E. (1971). Elastic constants of fiber-reinforced composites with transversely isotropic constituents. ASME Journal of Applied Mechanics, 38, 1062–1065.

    Article  Google Scholar 

  • Benveniste, Y. (2008). Revisiting the generalized self-consistent scheme in composites: Clarification of some aspects and a new formulation. Journal of the Mechanics and Physics of Solids, 56, 2984–3002.

    Article  MathSciNet  MATH  Google Scholar 

  • Christensen, R. M. (1990). A critical evaluation for a class of micromechanics models. Journal of the Mechanics and Physics of Solids, 38, 379–404.

    Article  Google Scholar 

  • Christensen, R. M. (1995). The hierarchy of microstructures for low density materials. Zeitschrift für Angewandte Mathematik und Physik, 46(Special Issue), S506–S521.

    MATH  Google Scholar 

  • Christensen, R. M. (1998). Two theoretical elasticity micromechanics models. Journal of Elasticity, 50, 15–25.

    Article  MATH  Google Scholar 

  • Christensen, R. M. (2003). Mechanics of cellular and other low density materials. International Journal of Solids and Structures, 37, 93–104.

    Article  Google Scholar 

  • Christensen, R. M., & Lo, K. H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315–330. Erratum ibid. 34, 639 (1986).

    Google Scholar 

  • Christensen, R. M., Schantz, H., & Schapiro, J. (1992). On the range of validity of the Mori-Tanaka method. Journal of the Mechanics and Physics of Solids, 40, 69–73.

    Article  Google Scholar 

  • Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Gibson, L. J., & Ashby, M. F. (1997). Cellular solids, structure and properties (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hashin, Z. (1962). The elastic moduli of heterogenous materials. ASME Journal of Applied Mechanics, 29, 143–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Hashin, Z. (1964). Theory of mechanical behavior of heterogeneous media. Applied Mechanics Reviews, 17, 1–9.

    Google Scholar 

  • Hashin, Z. (1965). On elastic behavior of fiber reinforced materials of arbitrary transverse phase geometry. Journal of the Mechanics and Physics of Solids, 13, 119–134.

    Article  Google Scholar 

  • Hashin, Z. (1967). Variational principles in elasticity in terms of the elastic polarization tensor. International Journal of Engineering Science, 5, 213–223.

    Article  MATH  Google Scholar 

  • Hashin, Z. (1972). Theory of fiber reinforced materials. NASA CR-1974. Washington, DC: National Aeronautics and Space Administration, 690.

    Google Scholar 

  • Hashin, Z. (1979). Analysis of properties of fiber composites with anisotropic constituents. Journal of Applied Mechanics, 46, 543–550.

    Article  MATH  Google Scholar 

  • Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219.

    Google Scholar 

  • Hashin, Z., & Shtrikman, S. (1962a). On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10, 335–342.

    Article  MathSciNet  Google Scholar 

  • Hashin, Z., & Shtrikman, S. (1962b). A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, 10, 343–352.

    Article  MathSciNet  Google Scholar 

  • Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Hervé, E., & Zaoui, A. (1995). Elastic behaviour of multiply coated fibre-reinforced composites. International Journal of Engineering Science, 33, 1419–1433.

    Article  MATH  Google Scholar 

  • Hill, R. (1963a). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372 [1].

    Google Scholar 

  • Hill, R. (1963b). New derivations of some elastic extremum principles. In Progress in applied mechanics. W. Prager 60th anniversary colume. London: McMillan & Co., pp. 99–106.

    Google Scholar 

  • Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.

    Article  MathSciNet  Google Scholar 

  • Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.

    Article  Google Scholar 

  • Milton, G. W. (1985). The coherent potential approximation is a realizable effective medium scheme. Communications in Mathematical Physics, 99, 463–500.

    Article  MathSciNet  Google Scholar 

  • Milton, G. W. (2002). The theory of composites. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Nemat-Nasser, S., & Hori, M. (1995). Universal bounds for overall properties of linear and nonlinear heterogeneous solids. Journal of Engineering Materials and Technology, 117, 412–432.

    Article  Google Scholar 

  • Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Nemat-Nasser, S., Iwakuma, T., & Hejazi, M. (1982). On composites with periodic structure. Mechanics of Materials, 1, 239–267.

    Article  Google Scholar 

  • Paul, B. (1960). Prediction of elastic constants of multiphase materials. Transactions of the Metallurgy Society of AIME, 218, 36–41.

    Google Scholar 

  • Reuss, A. (1929). Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49–58.

    Article  MATH  Google Scholar 

  • Teply, J. L., & Dvorak, G. J. (1988). Bounds on overall instantaneous properties of elastic-plastic composites. Journal of the Mechanics and Physics of Solids, 36, 29–58.

    Article  MATH  Google Scholar 

  • Torquato, S. (2002). Random heterogeneous materials: Microstructure and macroscopic properties. New York: Springer.

    Book  Google Scholar 

  • Voigt, W. (1889). Å°ber die Berechnung zwischen den beiden Elastizitätsconstanten isotroper Körper. Wiedemanns Annalen der Physik und Chemie, 38, 573–578.

    Article  Google Scholar 

  • Walpole, L. J. (1966). On bounds for the overall elastic moduli of inhomogeneous systems I. Journal of the Mechanics and Physics of Solids, 14, 151–162. 1966b II. ibid., 14, 289–301.

    Google Scholar 

  • Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.

    Article  MATH  Google Scholar 

  • Walpole, L. J. (1980) Evaluation of overall reaction of a composite solid with inclusions of any shape. Continuum models of discrete systems. Waterloo: University of Waterloo Press.

    Google Scholar 

  • Walpole, L. J. (1985c). The analysis of the overall elastic properties of composite materials. In B. A. Bilby, K. J. Miller, & J. R. Willis (Eds.), Fundamentals of deformation and fracture: Eshelby memorial symposium (pp. 91–107). Cambridge: Cambridge University Press.

    Google Scholar 

  • Weng, G. J. (1992). Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. International Journal of Engineering Science, 30, 83–92.

    Article  MathSciNet  MATH  Google Scholar 

  • Willis, J. R. (1977). Bounds and self-consistent estimates for the overall moduli of anisotropic composites. Journal of the Mechanics and Physics of Solids, 25, 185–202.

    Article  MATH  Google Scholar 

  • Wu, T. T. (1966). The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2, 1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dvorak, G.J. (2013). Evaluations and Bounds on Elastic Moduli of Heterogeneous Materials. In: Micromechanics of Composite Materials. Solid Mechanics and Its Applications, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4101-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4101-0_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4100-3

  • Online ISBN: 978-94-007-4101-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics