Skip to main content

Observational Techniques: Sampling the Mountain Atmosphere

  • Chapter
  • First Online:
Mountain Weather Research and Forecasting

Abstract

In this chapter several types of instruments are surveyed that have contributed to increased understanding of the structure of atmospheric flows and processes that drive these flows in complex terrain. After a brief example of the use of in-situ measurements, those that are in contact with the air they are measuring, a review of basic remote sensing principles serves as a background for a discussion of several types of remote sensors. The review focuses on active remote sensing systems, those that transmit and receive their own signal, including sodar, radar, radar wind profilers, and lidar. Examples of the kind of data available from each type of system allow an appreciation for how these systems contribute to advanced understanding of atmospheric processes by providing data above the surface and revealing the evolving vertical and horizontal structure of complex terrain flows. Advantages of deploying combinations of complementary instruments are described. The roles of measurements and mesoscale numerical models are discussed in a section where modeling studies have used high-resolution remote sensing and other advanced measurement systems to verify the models. Finally a brief section describes turbulence measurement techniques by remote sensing that may be able to provide profiles of turbulence quantities in mountain studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo, M., 2005: Resonance scattering lidar. Ch. 11 in Lidar: Range-Resolved optical Remote Sensing of the Atmosphere, ed. C. Weitkamp. Springer Science C Business Media, Inc., New York, pp. 307–324.

    Google Scholar 

  • Alvarez II, R. J., C.J. Senff, R.M. Hardesty, D.D. Parrish, W.T. Luke, T.B. Watson, P.H. Daum, and N. Gillani, 1998: Comparisons of airborne lidar measurements of ozone with airborne in situ measurements during the 1995 Southern Oxidants Study. J. Geophys. Res., 103, 31,155–31,171.

    Google Scholar 

  • Alvarez II, R. J., C. J. Senff, A.O. Langford, A.M. Weickmann, D.C. Law, J.L. Machol, D.A. Merritt, R.D. Marchbanks, S.P. Sandberg, W.A. Brewer, R.M. Hardesty, R.M. Banta, 2011: Development and application of a compact, tunable, solid-state airborne ozone lidar system for boundary layer profiling. J. Atmos. Oceanic Technol., 28, 1258–1272.

    Google Scholar 

  • Angevine, W.M., and J.I. MacPherson, 1995: Comparison of wind profiler and aircraft wind measurements at Chebogue Point, Nova Scotia. J. Atmos. Ocean. Technol., 12, 421–426.

    Google Scholar 

  • _____, P.S. Bakwin, and K.J. Davis, 1998: Wind profiler and RASS measurements compared with measurements from a 450-m-tall tower. J. Atmos. Ocean. Technol., 15, 818–825.

    Google Scholar 

  • Atlas, D., 1990: Radar in meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, ed. Amer. Meteor. Soc., Boston, 806 pp.

    Google Scholar 

  • Austin, P.M., and A.C. Bemis, 1950: A quantitative study of the “bright band” in radar precipitation echoes. J. Meteor., 7, 145–151.

    Google Scholar 

  • Balsley, B.B., R.G. Frehlich, M.L.J.Y. Meillier, and A. Muschinski, 2003: Extreme gradients in the nocturnal boundary layer: Structure, evolution, and potential causes. J. Atmos. Sci., 60, 2496–2508.

    Google Scholar 

  • Banta R.M., L.D. Olivier, and J.M. Intrieri, 1990: Doppler lidar observations of the 9 January 1989 severe downslope windstorm in Boulder, Colorado. Preprints, 5 th Conf. on Mountain Meteor., 25–29 June, Boulder CO, pp. 68–69.

    Google Scholar 

  • _____, 1990: The role of mountain flows in making clouds. Ch. 9 in Atmospheric Processes over Complex Terrain, ed. William Blumen, Meteorological Monogr., 23 (No. 45), 229–283.

    Google Scholar 

  • _____, L.D. Olivier, E.T. Holloway, R.A. Kropfli, B.W. Bartram, R.E. Cupp, and M.J. Post, 1992: Smoke column observations from two forest fires using Doppler lidar and Doppler radar. J. Appl. Meteor., 31, 1328–1349.

    Google Scholar 

  • _____, L.D. Olivier, and D.H. Levinson, 1993: Evolution of the Monterey Bay sea breeze layer as observed by pulsed Doppler lidar. J. Atmos. Sci., 50 (24), 3959–3982.

    Google Scholar 

  • _____, 1995: Sea breezes shallow and deep on the California coast. Mon. Wea. Rev., 123, 3614–3622.

    Google Scholar 

  • _____, L.D. Olivier, W.D. Neff, D.H. Levinson, and D. Ruffieux, 1995: Influence of canyon-induced flows on flow and dispersion over adjacent plains. Theoretical and Appl. Climatology, 52, 27–42.

    Google Scholar 

  • _____, _____, P.H. Gudiksen, and R. Lange, 1996: Implications of small-scale flow features to modeling dispersion over complex terrain. J. Appl. Meteor., 35, 330–342.

    Google Scholar 

  • _____, P.B. Shepson, J.W. Bottenheim, K.G. Anlauf, H.A. Wiebe, A.J. Gallant, T. Biesenthal, L.D. Olivier, C.-J. Zhu, I.G. McKendry, and D.G. Steyn, 1997a: Nocturnal cleansing flows in a tributary valley. Atmos. Environ., 31, 2147–2162.

    Google Scholar 

  • _____, B.W. Orr, C.J. Grund, D.H. Levinson, A.S. Frisch, and S.D. Mayor, 1997b: Estimation of TKE and momentum flux from Doppler lidar scans during LIFT. Preprints, 12th Symp. on Boundary Layers and Turbulence, Amer. Meteor. Soc., 11–12.

    Google Scholar 

  • _____, C.J. Senff, A.B. White, M. Trainer, R.T. McNider, R.J. Valente, S.D. Mayor, R.J. Alvarez, R.M. Hardesty, D.D. Parrish, and F.C. Fehsenfeld, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22,519–22,544.

    Google Scholar 

  • _____, L.S. Darby, P. Kaufmann, D.H. Levinson, and C.-J. Zhu, 1999: Wind flow patterns in the Grand Canyon as revealed by Doppler lidar. J. Appl. Meteor., 38, 1069–1083.

    Google Scholar 

  • _____, R.K. Newsom, J.K. Lundquist, Y.L. Pichugina, R.L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221–252.

    Google Scholar 

  • _____, and A.B. White, 2003: Mixing-height differences between land-use types: Dependence on wind speed. J. Geophys. Res., 108, (D10), 4321.

    Google Scholar 

  • _____, L.S. Darby, J.D. Fast, J.O. Pinto, C.D. Whiteman, W.J. Shaw, and B.D. Orr, 2004: Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and implications to other flow features. J. Appl. Meteor., 43, 1348–1365.

    Google Scholar 

  • _____, C.J. Senff, T.B. Ryerson, J. Nielsen-Gammon, L.S. Darby, R.J. Alvarez, S.P. Sandberg, E.J. Williams, and M. Trainer, 2005: A bad air day in Houston. Bull. Amer. Meteor. Soc., 86, 657–669.

    Google Scholar 

  • _____, Y.L. Pichugina, and W.A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 2700–2719.

    Google Scholar 

  • _____, L.S. Darby, W.A. Brewer, R.M. Hardesty, C.M. Shun, C.M. Cheng, B.L. Choy, O.S.M. Lee, S.T. Chan, and S.Y. Lau, 2007: Detection and diagnosis of wind shear and turbulence using Doppler lidar at Hong Kong International Airport. Final Report: NOAA/ESRL and Hong Kong Observatory Report, 130 pp.

    Google Scholar 

  • _____, 2010: High-resolution verification of mesoscale models using remote-sensing measurements. 5th Int’l Symposium on Computational Wind Engineering (CWE2010), Chapel Hill NC, 23–27 May 2010.

    Google Scholar 

  • Bao, J.-W., S.A. Michelson, P.O.G. Persson, I.V. Djalalova, and J.M. Wilczak, 2008: Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study. J. Appl. Meteor. Climatol., 47, 2372–2394.

    Google Scholar 

  • Battan, L.J., 1973: Radar observation of the Atmosphere. University of Chicago Press, Chicago, 324 pp.

    Google Scholar 

  • Baumann-Stanzer, K., 2004: The UHF wind profiler at Vienna airport—data quality control and comparisons to rawinsonde data. Meteor. Atmos. Phys., 85, 165–174.

    Google Scholar 

  • Behrens, P., S. Bradley, and S. von Hunerbein, 2008: A scanning bi-static SODAR. 14 th Intl. Symp. for the Advancement of Boundary Layer Remote Sensing, IOP Conf. Series: Earth and Environmental Science, 6 pp.

    Google Scholar 

  • Behrendt, A., 2005: Temperature measurements with lidar. Ch. 10 in Lidar: Range-Resolved optical Remote Sensing of the Atmosphere, ed. C. Weitkamp. Springer Science C Business Media, Inc., New York, pp. 273–306.

    Google Scholar 

  • Beyrich, F., 1997: Mixing height estimation from sodar data—A critical discussion. Atmos. Environ., 31, 3941–3953.

    Google Scholar 

  • Bilbro, J., G. Fichtl, D. Fitzjarrald, M. Krause, and R. Lee, 1984: Airborne Doppler lidar wind field measurements. Bull. Amer. Meteor. Soc., 65, 348–359.

    Google Scholar 

  • Birkenheuer, D. and S. Gutman, 2005: A comparison of GOES moisture-derived product and GPS-IPW data during IHOP 2002. J. Atmos. Ocean. Technol., 22, 1840–1847.

    Google Scholar 

  • Bösenberg, J., 2005: Differential-absorption lidar for water-vapor and temperature profiling. Ch. 8 in Lidar: Range-Resolved optical Remote Sensing of the Atmosphere, ed. C. Weitkamp. Springer Science +Business Media, Inc., New York, pp. 214–239.

    Google Scholar 

  • Bougeault, P. and Coauthors, 2001: The MAP Special Observing Period. Bull. Amer. Meteor. Soc., 82, 433–462.

    Google Scholar 

  • Brewer, W.A., V. Wulfmeyer, R.M. Hardesty, and B.J. Rye, 1998: Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar, Proceedings, 19th International Laser Radar Conference, Annapolis, MD, July 6–10.

    Google Scholar 

  • Bringi, V.N., and B. Chandrasekar, 2001: Polarimetric Doppler weather radar. Principles and applications. Cambridge Univ. Press, xxiv+636 pp pp.

    Google Scholar 

  • Browell, E. V., S. Ismail, and S. T. Shipley, 1985: Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols, Appl. Opt., 24, 2827–2836.

    Google Scholar 

  • Browning, K.A. and Wexler, R., 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor. 7, 105–113.

    Google Scholar 

  • Browning, K.A., F.F. Hill, and C.W. Pardoe, 1974: Structure and mechanism of precipitation and effect of orography in a wintertime warm sector. Q. J. Royal Meteor. Soc, 100, 309–330.

    Google Scholar 

  • Bruintjes, R.T., T.L. Clark, and W.D. Hall, 1994: Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona. J. Atmos. Sci., 51, 48–67.

    Google Scholar 

  • Calhoun, R. R, Heap, M. Princevac, J. Sommer, H. Fernando, and D. Ligon, 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 Dispersion Experiment. J. Appl. Meteor. Climatol., 45, 1116–1126.

    Google Scholar 

  • Chadwick, R.B., and E.E. Gossard, 1986: Radar probing and measurement of the planetary boundary layer: Part I. Scattering from refractive index irregularities. In Probing the Atmospheric Boundary Layer. D.H. Lenschow, ed. Amer. Meteor. Soc., pp. 163–182.

    Google Scholar 

  • Clark, T.L., W.D. Hall, and R.M. Banta, 1994: Two- and three-dimensional simulations of the 9 January 1989 windstorm: Comparison with observations. J. Atmos. Sci., 51, 2317–2343.

    Google Scholar 

  • _____, _____, et al., 2000: Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparison with observations. J. Atmos. Sci., 57, 1105–1131.

    Google Scholar 

  • Cohn, S.A., W.O.J. Brown, C.L. Martin, M.E. Susedik, G. Maclean, and D.B. Parsons, 2001: Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR), Annales Geophysicae, 19(8), 845–854, 2001.

    Google Scholar 

  • Colle B. A., Lin Y., Medina S., Smull B., 2008: Orographic modification of convection and flow kinematics by the Oregon coastal range and Cascades during IMPROVE-2. Mon. Wea. Rev., 136, 3894–3916.

    Google Scholar 

  • Cotton, W.R., R.L. George, and K.R. Knupp, 1982: An intense, quasi-steady thunderstorm over mountainous terrain. Part I: Evolution of the storm-initiating mesoscale circulation. J. Atmos. Sci., 39, 328–342.

    Google Scholar 

  • Coulter, R.L., 1979: A comparison of three methods for measuring mixing-layer height. J. Appl. Meteor., 18, 1495–1499.

    Google Scholar 

  • _____, G. Klazura, B.M. Lescht, T.J. Martin, J.D. Shannon, D.L. Sisterton, and M.L. Wesley, 1999: The Argonne boundary layer experiments facility: Using minisodars to complement a wind profiler network. Meteor. Atmos. Phys., 71, 53–59.

    Google Scholar 

  • _____, M.S Pekour, and T.J. Martin, 2004: Elevated stratified layers observed with SODAR during VTMX. Meteor. Atmos. Phys., 85, 115–123.

    Google Scholar 

  • _____, and M. Kallistratova, 2004: Two decades of progress in SODAR techniques: A review of 11 ISARS proceedings. Meteor. Atmos. Phys., 85, 3–19.

    Google Scholar 

  • Courtney, M., R. Wagner, and P. Lindelöw, 2008: Testing and comparison of lidars for profile and turbulence measurements in wind energy. 14 th Intl. Symp. for the Advancement of Boundary Layer Remote Sensing, IOP Conf. Series: Earth and Environmental Science, 14 pp.

    Google Scholar 

  • Crescenti, G.H., 1997: A look back on two decades of Doppler sodar comparison studies. Bull. Amer. Meteor. Soc., 78, 651–673.

    Google Scholar 

  • Damiani, R., and Coauthors, 2008: Cumulus, Photogrammetric, In-situ, and Doppler Observations: The CuPIDO 2006 experiment. Bull. Amer. Meteor. Soc., 89, 57–73.

    Google Scholar 

  • Darby, L.S., W.D. Neff, and R.M. Banta, 1999: Multiscale analysis of a meso-β frontal passage in the complex terrain of the Colorado Front Range. Mon Wea. Rev., 127, 2062–2081.

    Google Scholar 

  • _____, A. Gohm, L.B. Nance, S. Gabersek, R.M. Banta, and S. Sandberg, 2000: Foehn flow in the Austrian Alps interrupted by a cold front passage, Part I. Ninth Conf. on Mountain Meteor., 7–11 August 2000, Aspen, Colorado, 79–82.

    Google Scholar 

  • _____, L.S., R.M. Banta, and R.A. Pielke, Sr.: 2002a: Comparisons between mesoscale model terrain sensitivity and Doppler lidar measurements of the sea breeze at Monterey Bay. Mon. Wea. Rev., 130, 2813–2838.

    Google Scholar 

  • _____, R.M. Banta, and R.A. Pielke, Sr.: 2002a: Comparisons between mesoscale model terrain sensitivity and Doppler lidar measurements of the sea breeze at Monterey Bay. Mon. Wea. Rev., 130, 2813–2838.

    Google Scholar 

  • _____, R. M. Banta, W.A. Brewer, W.D. Neff, R.D. Marchbanks, B.J. McCarty, C. J. Senff, A.B. White, W.M. Angevine, E.J. Williams, 2002b: Vertical variations in O3 concentrations before and after a gust front passage. J. Geophys. Res., 107 (D13), 4321.

    Google Scholar 

  • _____, K.J. Allwine, and R.M. Banta, 2006: Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. J. Appl. Meteor., 45, 740–753.

    Google Scholar 

  • _____, and G.S. Poulos, 2006: The evolution of lee wave/rotor activity in the lee of Pike’s Peak under the influence of a cold frontal passage: Implications for aircraft safety. Mon. Wea. Rev., 134, 2857–2876.

    Google Scholar 

  • De Wekker, S. F. J. and S. D. Mayor, 2009: Observations of atmospheric structure and dynamics in the Owens Valley of California with a ground-based, eye-safe, scanning aerosol lidar. J. Appl. Meteor. Clim., 48, 1483–1499.

    Google Scholar 

  • Doran, J.C., J.D. Fast, and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83, 537–551.

    Google Scholar 

  • Doviak, R.J., and D.S. Drnić, 1993: Doppler radar and weather observations, 2nd ed. Academic Press, San Diego, 526 pp.

    Google Scholar 

  • Drobinski, P., C. Heaberli, E. Richard, M. Lothon, A.M. Dabas, P.H. Flamant, M. Furger, and R. Steinacker, 2003: Scale interaction processes during the MAP IOP-12 south Foehn event in the Rhine Valley. Quart. J. Royal Meteor. Soc., 129, 729–753.

    Google Scholar 

  • _____, S. Bastin, V. Guenard, J.-L.Caccia, A.M. Dabas, P. Delville, A. Protat, O. Reitebuch, and C. Werner, 2005: Summer mistral at the exit of the Rhone Valley. Quart. J. Royal Meteor. Soc., 131, 353–375.

    Google Scholar 

  • Droegemeier, K.K. and R.B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I, Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.

    Google Scholar 

  • Durran, D.R., T. Maric, R.M. Banta, L.S. Darby, and R.M. Hardesty, 2003: A comparison of ground based Doppler lidar and airborne in situ wind observations above complex terrain. Quart. J. Roy. Meteor Soc., 129, 693–713.

    Google Scholar 

  • Eberhard, W.L., G.T. McNice, and S.W. Troxel, 1987: Lidar sensing of plume dispersion: analysis methods and product quality for light-scattering tracer particles. J. Atmos. Ocean. Technol., 4, 674–689.

    Google Scholar 

  • Eichinger, W.E., et al. 1999: The development of a scanning Raman water vapor lidar for boundary layer and tropospheric observations. J. Atmos. Ocean. Technol., 16, 1753–1766.

    Google Scholar 

  • Eloranta, E.E., 2005: High spectral resolution lidar. Ch. 5 in Lidar: Range-Resolved optical Remote Sensing of the Atmosphere, ed. C. Weitkamp. Springer Science + Business Media, Inc., New York, pp. 143–163.

    Google Scholar 

  • Emeis, S., M. Harris, and R.M. Banta, 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteor. Zeitschrift, 16, 337–347.

    Google Scholar 

  • _____, K. Schäfer, and C. Münkel, 2008: Surface-based remote sensing of the mixing-layer height—A review. Meteor. Zeitschrift, 17, 621–630.

    Google Scholar 

  • Engelbart, D.A.M., M. Kallistratova, and R. Kouznetsov, 2007: Determination of the turbulent fluxes of heat and momentum in the ABL by ground-based remote-sensing techniques (a Review). Meteor. Z., 16, 325–335.

    Google Scholar 

  • Fast, J.D., and L.S. Darby, 2004: An evaluation of mesoscale model predictions of down-valley and canyon flows and their consequences using Doppler lidar measurements during VTMX 2000. J. Appl. Meteor., 43, 420–436.

    Google Scholar 

  • Feltz, W.F., H.B. Howell, R.O. Knuteson, H.M. Woolf, and H E. Revercomb. 2003: Near continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42, 584–597.

    Google Scholar 

  • Frehlich, R., and L. Cornman, 2002: Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Ocean. Technol., 19, 355–366.

    Google Scholar 

  • Frisch, A.S., 1991: On the measurement of second moments of turbulent velocity with a single Doppler radar over non-homogeneous terrain. Bound.-Layer Meteor., 54, 29–39.

    Google Scholar 

  • _____, B.W. Orr, and B.E. Martner, 1992: Doppler radar observations of the development of a boundary-layer nocturnal jet. Mon. Wea. Rev., 120, 3–16.

    Google Scholar 

  • Flamant, C., P. Drobinsky, L. Nance, R. Banta, L. Darby, J. Dusek, M. Hardesty, J. Pelon, and E. Richard, 2002: Gap flow in an Alpine valley during a shallow south foehn event: Observations, numerical simulations and hydraulic analog. Quart. J. Roy. Meteor Soc., 128, 1173–1210.

    Google Scholar 

  • Fujita, T., and J. McCarthy, 1990: The applications of weather radar to aviation meteorology. Ch. 31a in Radar in meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, ed. Amer. Meteor. Soc., Boston, pp. 657–681.

    Google Scholar 

  • Gal-Chen, T., M. Xu, and W.L. Eberhard, 1982: Estimations of atmospheric planetary boundary layer fluxes and other turbulence parameters from Doppler lidar data. J. Geophys. Res., 97, 18,409–18,423.

    Google Scholar 

  • Germann, U. and J. Joss, 2004: Operational measurement of precipitation in mountainous terrain. In P.Meischner, editor, Weather Radar: Principles and Advanced Applications, vol XVII of Physics of Earth and Space Environment, chap. 2, 52–77, Springer Verlag.

    Google Scholar 

  • Gohm, A., G. Zängl, and G.J. Mayr, 2004: South foehn in the Wipp Valley on 24 October 1999 (MAP IOP 10): Verification of high-resolution numerical simulations with observations. Mon. Wea. Rev., 132, 78–102.

    Google Scholar 

  • _____, and G.J. Mayr, 2005: Numerical and observational case-study of a deep Adriatic bora. Quart. J. Roy. Meteor Soc., 131, 1363–1392.

    Google Scholar 

  • _____, _____, L.S. Darby, and R.M. Banta, 2010: Evolution and structure of a cold front in an Alpine valley as revealed by a Doppler lidar. Quart. J. Royal Meteor. Soc., Part B, 136, 962–977.

    Google Scholar 

  • Goldsmith, J.E.M., F.H. Blair, S.E. Bisson, and D.D. Turner, 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 4979–4990.

    Google Scholar 

  • Gossard, E.E., J.E. Gaynor, R.J. Zamora, and W.D. Neff, 1985: Finestructure of elevated stable layers observed by sounder and in situ tower sensors. J. Atmos. Sci., 42, 2156–2169.

    Google Scholar 

  • Gossard, E.E., 1990: Radar research on the atmospheric boundary layer. Ch. 27a in Radar in meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, ed., Amer. Meteor. Soc., Boston, pp. 477–527.

    Google Scholar 

  • Gossard, E.E., R.G. Strauch, and R.R. Rogers, 1990: Evolution of dropsize distributions in liquid precipitation observed by ground-based Doppler radar. J. Atmos. Ocean. Technol., 7, 815–828.

    Google Scholar 

  • Grubišić, V. and Coauthors, 2008: The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights. Bull. Amer. Meteor. Soc., 89, 1513–1533.

    Google Scholar 

  • Grund, C.J., R.M. Banta, J.L. George, J.N. Howell, M.J. Post, R.A. Richter, and A.M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Ocean. Technol., 18, 376–393.

    Google Scholar 

  • Grzeschik, M., et al. 2008: Four-dimensional variational data analysis of water vapor Raman lidar data and their impact on mesoscale forecasts. J. Atmos. Ocean. Technol., 25, 1437–1453.

    Google Scholar 

  • Hägeli, P., D.G. Steyn, and K.B. Strawbridge, 2000: Spatial and temporal variability of mixed-layer depth and entrainment zone thickness. Bound.-Layer Meteor., 97, 47–71.

    Google Scholar 

  • Hall, F.F., R.M. Huffaker, R.M. Hardesty, M.E. Jackson, T.R. Lawrence, M.J. Post, R.A. Richter, and B.F. Weber, 1984: Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. Appl. Optics, 23, 2503–2506.

    Google Scholar 

  • Hardesty, R.M., and L.S. Darby, 2005: Ground-based and airborne lidar. Encyclopedia of Hydrologic Sciences, Malcolm G. Anderson, Ed., Wiley, pp. 697–712.

    Google Scholar 

  • Hair, J.W., C.A. Hostetler, A.L. Cook, D.B. Harper, R.A. Ferarre, T.L. Mack, W. Welch, L.M. Isquierdo, and F.E. Hovis 2008: Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt., 47, 6734–6752.

    Google Scholar 

  • Hayden, K.L., et al. 1997: The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific ’93. Atmos. Environ., 31, 2089–2105.

    Google Scholar 

  • Hill, F.F., K.A. Browning, and M.J. Bader, 1981: Radar and rain-gauge observations of orographic rain over South-Wales. Q. J. Roy. Meteor. Soc, 107, 643–670.

    Google Scholar 

  • Hill, M., R. Calhoun, H.J.S. Fernando, A. Wieser, A. Dörnbrack, M. Weissmann, G. Mayr, and R. Newsom, 2010: Coplanar Doppler lidar retrieval of rotors from T-REX.

    Google Scholar 

  • Hogg, D.C., F.O. Guiraud, J.B. Snider, M.T. Decker, and E.R. Westwater, 1983: A steerable dual-channel microwave radiometer for measurement of water vapor and liquid in the troposphere. J. Climate and Appl. Meteor., 22, 789–806.

    Google Scholar 

  • Hoff, R.M., M. Harwood, A. Sheppard, F. Froude, J.B. Martin, and W. Strapp, 1997: Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC. Atmos. Environ., 31, 2123–216234.

    Google Scholar 

  • Intrieri, J.M., C.G. Little, W.J. Shaw, R.M. Banta, P.A. Durkee, and R.M. Hardesty, 1990: The Land/Sea Breeze Experiment (LASBEX). Bull. Amer. Meteor. Soc., 71, 656–664.

    Google Scholar 

  • Intrieri, J.M., M.D. Shupe, T. Uttal, and B.J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res. 107.

    Google Scholar 

  • Kaimal, J.C., 1986: Flux and profile measurements from towers in the boundary layer. In Probing the Atmospheric Boundary Layer. D.H. Lenschow, ed. Amer. Meteor. Soc., pp. 19–28.

    Google Scholar 

  • Kallistratova, M.A., and R.L. Coulter, 2004: Application of SODARs in the study and monitoring of the environment. Meteor. Atmos. Phys., 85, 21–37.

    Google Scholar 

  • Kallistratova, M.A., 2008: Backscattering and reflection of acoustic waves in the stable atmospheric boundary layer. IOP Conf. Ser., Earth Environ. Sci.,1,012001 (012014 pp.).

    Google Scholar 

  • King, C.W., 1997: A climatology of thermally forced circulations in oppositely oriented airsheds along the Continental Divide in Colorado. Ph.D. Dissertation, Univ. of Colorado; NOAA Tech. Memo. ERL ETL-283, 152 pp.

    Google Scholar 

  • Klimowski, B.A., et al. 1998: The 1995 Arizona Program: Toward a better understanding of winter storm precipitation development in mountainous terrain. Bull. Amer. Meteor. Soc., 79, 799–813.

    Google Scholar 

  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor. Zeitschrift, 17, 931–948.

    Google Scholar 

  • Kouznetsov, R.D., 2008: Quantitative estimate of the role of temperature gradients in sodar signal formation. IOP Conf. Ser., Earth Environ. Sci.,1,012039.

    Google Scholar 

  • Kropfli, R.A., 1990: The atmospheric boundary layer: Panel report. Ch. 27b in Radar in meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, ed. Amer. Meteor. Soc., Boston, pp. 528–533.

    Google Scholar 

  • Knupp, K.R., and W.R. Cotton, 1982a: An intense, quasi-steady thunderstorm over mountainous terrain. Part II: Doppler radar observations of the storm morphological structure. J. Atmos. Sci., 39, 343–358.

    Google Scholar 

  • _____, and _____, 1982b: An intense, quasi-steady thunderstorm over mountainous terrain. Part III: Doppler radar observations of the turbulence structure. J. Atmos. Sci., 39, 343–358.

    Google Scholar 

  • _____, and _____, 1987: Internal structure of a small mesoscale system. Mon. Wea. Rev., 123, 2029–2050.

    Google Scholar 

  • Kropfli, R.A., 1986a: Single Doppler radar measurements of turbulence profiles in the convective boundary layer. J. Atmos. Ocean. Technol., 3, 305–314.

    Google Scholar 

  • _____, 1986b: Radar probing and measurement of the planetary boundary layer: Part II. Scattering from refractive particulates. In Probing the Atmospheric Boundary Layer. D.H. Lenschow, ed. Amer. Meteor. Soc., pp. 183–199.

    Google Scholar 

  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor. Zeitschrift, 17, 931–948.

    Google Scholar 

  • Lenschow, D.H., 1986: Probing the atmospheric boundary layer, D.H. Lenschow, ed. Amer. Meteor. Soc., Boston, 269 pp.

    Google Scholar 

  • Langford, A. O., C. J. Senff, R. J. Alvarez, II, R. M. Banta, and R. M. Hardesty, 2010: Long-range transport of ozone from the Los Angeles Basin: A case study. Geophys. Res. Lett., 37, L06807.

    Google Scholar 

  • Lenschow, D.H., J. Mann, and L. Kristensen, 1994: How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Ocean. Technol., 11, 661–673.

    Google Scholar 

  • _____, V.O. Wulfmeyer, and C.J. Senff, 2000: Measuring second-through-fourth-order moments in noisy data. J. Atmos. Ocean. Technol., 17, 1330–1347.

    Google Scholar 

  • Levinson, D.H., and R.M. Banta, 1995: Observations of a terrain-forced mesoscale vortex and canyon drainage flows along the Front Range of the Colorado Rockies. Mon. Wea. Rev., 123, 2029–2050.

    Google Scholar 

  • Lhermitte, R. 1969: Atmospheric probing by Doppler radar. In Atmospheric Exploration by Remote Probes, 2, 253–285, Washington DC, Nat. Acad. Sci.

    Google Scholar 

  • Lhermitte, R., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Preprints, 9th Radar Meteorology Conf., Kansas City, Amer. Meteor. Soc., 218–223.

    Google Scholar 

  • _____, and _____, 1963: Doppler fall speed and particle growth in stratiform precipitation. Preprints, 10th Radar Meteorology Conf., Washington DC, Amer. Meteor. Soc., 297–302.

    Google Scholar 

  • Lothon, M., D.H. Lenschow, and S.D. Mayor, 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121, 521–536.

    Google Scholar 

  • Mahrt, L., and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 19–39.

    Google Scholar 

  • Martner, B.E., and Coauthors, 1993: An evaluation of wind profiler, RASS, and microwave radiometer performance. Bull. Amer. Meteor. Soc., 74, 599–613.

    Google Scholar 

  • _____, R.F. Reinking, and R.M. Banta, 2002: Radar observations of downslope flow at Mount Washington. Preprints, 10th Conf. on Mountain Meteorology, Park City, UT, AMS, 412–415.

    Google Scholar 

  • _____, S.E. Yuter, A.B. White, S.Y. Matrosov, D.E. Kingsmill, and F.M. Ralph, 2008: Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band. J. Hydromet. 9, 408–425.

    Google Scholar 

  • Mayor, S.D., and E.W. Eloranta, 2001: Two-dimensional vector wind fields from Volume Imaging Lidar data. J. Appl. Meteor., 40, 1331–1345.

    Google Scholar 

  • Mayr, G.J., L. Armi, S. Arnold, R.M. Banta, L.S. Darby, D. Durran, C. Flamant, S. Gabersek, A. Gohm, R. Mayr, S. Mobbs, L.B. Nance, I. Vergeiner, J. Vergeiner, and C.D. Whiteman, 2004: Gap flow measurements during the Mesoscale Alpine Programme. Meteor. Atmos. Phys., 86, 99–119.

    Google Scholar 

  • McKendry, I.G., and Coauthors 1997: Elevated ozone layers and vertical down-mixing over the Lower Fraser Valley, BC. Atmos. Environ., 31, 2135–2146.

    Google Scholar 

  • _____, D.G. Steyn, R. M. Banta, W. Strapp, K. Anlauf, and J. Pottier, 1998: Daytime photochemical pollutant transport over a tributary valley lake in southwestern British Columbia. J. Appl. Meteor., 37, 393–404.

    Google Scholar 

  • Measures, R.M., 1984: Laser Remote SensingFundamentals and Applications. Wiley-Interscience, New York.

    Google Scholar 

  • Medina, S., and R.A. Houze, 2003: Air motions and precipitation growth in Alpine storms. Quart. J. Roy. Meteor. Soc. 129, 345–371.

    Google Scholar 

  • Melfi, S.H., D.N. Whiteman, and R.A. Ferrare, 1989: Observation of atmospheric fronts using Raman lidar moisture measurements. J. Appl. Meteor., 28, 789–806.

    Google Scholar 

  • Mellqvist, J., J. Samuelsson, J. Johansson, C. Rivera, B. Lefer, S. Alvarez, and J. Jolly, 2010: Measurements of industrial emissions of alkenes in Texas using the Solar Occultation Flux method, J. Geophys. Res., 115, D00F17.

    Google Scholar 

  • Merritt, D.A., 1995: A statistical averaging method for wind profiler Doppler spectra. J. Atmos. Ocean. Technol., 12, 985–995.

    Google Scholar 

  • Michelson, S.A., and J.-W. Bao, 2008: Sensitivity of low-level winds simulated by the WRF model in California's Central Valley to uncertainties in the large-scale forcing and soil initialization. J. Appl. Meteor. Climatol., 47, 3131–3149.

    Google Scholar 

  • National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 234 pp.

    Google Scholar 

  • Neff, W.D., 1975: Quantitative evaluation of acoustic echoes from the planetary boundary layer. NOAA Tech. Report ERL 322-WPL, Boulder, 38 pp.

    Google Scholar 

  • _____, 1986: On the use of sodars to study stably stratified flow influenced by terrain. Atmos. Res., 20, 279–308.

    Google Scholar 

  • _____, 1990: Remote sensing of atmospheric processes over complex terrain. Ch. 8 in Atmospheric Processes over Complex Terrain, ed. William Blumen, Meteorological Monogr., 23 (No. 45), 173–228.

    Google Scholar 

  • _____, 1994: Mesoscale air quality studies with meteorological remote sensing systems. Int. J. Remote Sensing, 15, 393–426.

    Google Scholar 

  • _____, and R.L. Coulter, 1986: Acoustic remote sensing. In Probing the Atmospheric Boundary Layer. D.H. Lenschow, ed. Amer. Meteor. Soc., pp. 201–235.

    Google Scholar 

  • _____, and C.W. King, 1988: Observations of complex terrain flows using acoustic sounders: Drainage flow structure and evolution. Bound.-Layer Meteor., 43, 15–41.

    Google Scholar 

  • Neiman, P.J., R.M. Hardesty, M.A. Shapiro, and R.E. Cupp, 1988: Doppler lidar observations of a downslope windstorm. Mon. Wea. Rev., 116, 2265–2275.

    Google Scholar 

  • _____, F.M Ralph, A.B. White, J.D. Lundquist, and M.D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 22–47.

    Google Scholar 

  • Pichugina, Y.L., R.M. Banta, B. Jonkman, N.D. Kelley, R.K. Newsom, S.C. Tucker, and W.A. Brewer, 2008: Horizontal-velocity and variance measurements in the stable boundary layer using Doppler-lidar: Sensitivity to averaging procedures. J. Atmos. Ocean. Technol., 25, 1307–1327.

    Google Scholar 

  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Ocean. Technol., 26, 240–250.

    Google Scholar 

  • Pirronen, A.K., and E.W. Eloranta, 1995: Accuracy analysis of wind profiles calculated from volume imaging lidar data. J. Geophys. Res., 100, 25,559–25,567.

    Google Scholar 

  • Post, M.J., and R.E. Cupp, 1990: Optimizing a pulsed Doppler lidar. Appl. Optics, 29, 4145–4158.

    Google Scholar 

  • Post, M.J., 1996: A graphical technique for retrieving size distribution parameters from multiple measurements: Visualization and error analysis. J. Atmos. Ocean. Technol., 13, 863–873.

    Google Scholar 

  • _____, and W.D. Neff, 1986: Doppler lidar measurements of winds in a narrow mountain valley. Bull. Amer. Meteor. Soc., 67, 274–281.

    Google Scholar 

  • _____, C.J. Grund, A.M. Weickmann, K.R. Healey, and R.J. Willis, 1996: Comparison of Mount Pinatubo and El Chichon volcanic events: Lidar observations at 10.6 and 0.69 m. J. Geophys. Res., 101, 3929–3940.

    Google Scholar 

  • _____, C.J. Grund, D. Wang, and T. Deschler, 1997: Evolution of Mount Pinatubo’s aerosol size distributions over the continental United States: Two-wavelength lidar retrievals and in situ measurements. J. Geophys. Res., 102, 13,535–13,542.

    Google Scholar 

  • Poulos, G.S., J.E. Bossert, T.B. McKee, and R.A. Pielke, 2000: The interaction of katabatic flow and mountain waves. Part I: Observations and idealized simulations. J. Atmos. Sci., 57, 1919-1936.

    Google Scholar 

  • Poulos, G.S., and S.P. Burns, 2003: An evaluation of bulk Ri-based surface layer flux formulas for stable and very stable conditions with intermittent turbulence. J. Atmos. Sci., 60, 2523-2537.

    Google Scholar 

  • ——, 2007: The interaction of katabatic flow and mountain waves. Part II: Case study analysis and conceptual model. J. Atmos. Sci., 64, 1857-1879.

    Google Scholar 

  • Poulos, G.S., and J.E. Bossert, 1995: An observational and prognostic numerical investigation of complex terrain dispersion. J. Appl. Meteorol., 34, 650–669.

    Google Scholar 

  • Ralph, F.M., and Coauthors, 2003: The impact of a prominent rain shadow on flooding in California's Santa Cruz Mountains: A CALJET case study and sensitivity to the ENSO cycle. J. Hydrometeorol., 4, 1243–1264.

    Google Scholar 

  • Reinking, R.F., J.B. Snider, and J.L. Coen, 2000: Influences of storm-embedded orographic gravity waves on cloud liquid water and precipitation. J. Appl. Meteor., 39, 733–759.

    Google Scholar 

  • _____, A.S. Frisch, B.W. Orr, D.L. Korn, L.R. Bissonnette, and G. Roy, 2003: Remote sensing observations of effects of mountain blocking on travelling gravity-shear waves and associated clouds. Bound.-Layer Meteor., 109, 255–284.

    Google Scholar 

  • Reitebuch, O., and Coauthors, 2003: Determination of airflow across the Alpine ridge by a combination of airborne Doppler lidar, routine radiosounding and numerical simulation. Q. J. Royal Meteor. Soc., 129, 715–727.

    Google Scholar 

  • Rinehart, R.E., 2010: Radar for Meteorologists. 5th Ed., Rinehart Publications, Nevada, MO, USA, 482 pp.

    Google Scholar 

  • Rothermel, J. and Coauthors, 1998: The Multi-Center Airborne Coherent Atmospheric Wind Sensor. Bull. Amer. Meteor. Soc., 79, 581–599.

    Google Scholar 

  • Rotunno, R. and R.A. Houze, 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc. 133, 811–830.

    Google Scholar 

  • Rucker, M., R.M. Banta, and D.G. Steyn, 2008: Along-valley structure of daytime thermally driven flows in the Wipp Valley. J. Appl. Meteor., 47, 733–751.

    Google Scholar 

  • Sassen, K., 2005: Polarization in lidar. Ch. 2 in Lidar: Range-Resolved optical Remote Sensing of the Atmosphere, ed., C. Weitkamp. Springer Science +Business Media, Inc., New York, pp. 19–42.

    Google Scholar 

  • Schwiesow, R.L., R.E. Cupp, P.C. Sinclair, and R.F. Abbey 1981: Waterspout velocity measurements by airborne lidar. J. Appl. Meteor., 20, 341–348.

    Google Scholar 

  • Schwiesow, R.L., 1986: A comparative overview of active remote sensing techniques. In Probing the Atmospheric Boundary Layer. D.H. Lenschow, ed. Amer. Meteor. Soc., pp. 5–18.

    Google Scholar 

  • Schwiesow, R.L., 1986a: A comparative overview of active remote-sensing techniques. In: Probing the Atmospheric Boundary Layer. D.H. Lenschow, ed., Amer. Meteor. Soc., pp. 129–138.

    Google Scholar 

  • Schwiesow, R.L., 1986b: Lidar measurement of boundary-layer variables. In: Probing the Atmospheric Boundary Layer. D.H. Lenschow, ed., Amer. Meteor. Soc., pp. 139–162.

    Google Scholar 

  • Schotland, R. M., 1974: Errors in the lidar measurement of atmospheric gases by differential absorption. J. Appl. Meteorol., 13, 71–77.

    Google Scholar 

  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffe, A. Rasmussen, and P. Tericer, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001–1027.

    Google Scholar 

  • Senff, C.J., J. Bösenberg, and G. Peters, 1994: Measurement of water-vapor flux profiles in the convective boundary layer with lidar and radar-RASS. J. Atmos. Ocean. Technol., 11, 85–93.

    Google Scholar 

  • _____, _____, _____, and T. Schaberl, 1996: Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: A case study. Beitr. Phys. Atmos., 69, 161–176.

    Google Scholar 

  • _____, and Coauthors, 1998: Airborne lidar characterization of power plant plumes during the 1995 Southern Oxidants Study. J. Geophys. Res., 103, 31,173–31,189.

    Google Scholar 

  • Shaw, W.J., L.S. Darby, and R.M. Banta 2003: A comparison of winds measured by a 915 MHz wind profiling radar and a Doppler lidar. Preprints, 12th Symp. on Meteor. Obs. and Inst., Long Beach CA, Amer. Meteor. Soc., P1.8.

    Google Scholar 

  • Shun, C.M., and S.Y. Lau, 2002: Implementation of a Doppler Light Detection and Ranging (LIDAR) system for the Hong Kong International Airport. Preprints, 10th Conf on Aviation, Range, and Aerospace Meteorology, Portland OR, Amer. Meteor. Soc., 8.3.

    Google Scholar 

  • _____, C.M. Cheng, and O.S.M. Lee, 2003: LIDAR observations of terrain-induced flow and its application in airport wind-shear monitoring. Proc. Int. Conf on Alpine Meteor. (ICAM) and Mesoscale Alpine Programme (MAP), Brig, Switzerland, 6.6.

    Google Scholar 

  • _____, S.Y. Lau, C.M. Cheng, and H.Y. Chiu, 2004: LIDAR observations of windshear induced by mountain lee waves. Preprints, 11th Conf on Mountain Meteorology and MAP Meeting 2004, Mount Washington Valley, NH, Amer. Meteor. Soc., 11.2.

    Google Scholar 

  • _____, and P.W. Chan, 2008: Applications of an infrared Doppler lidar in detection of wind shear. J. Atmos. Ocean. Technol., 25, 637–655.

    Google Scholar 

  • Skolnik, M.I., 1980: Introduction to Radar Systems. New York, McGraw-Hill Book Co., 581 pp.

    Google Scholar 

  • Smith, T.L., S.G. Benjamin, S.I. Gutman, and S.R. Sahm, 2007: Forecast impact from assimilation of GPS-IPW observations into the Rapid Update Cycle. Mon. Wea. Rev., 135, 2914–2930.

    Google Scholar 

  • Spinhirne, J.D., J.A.R. Rall, and V.S. Scott, 1995: Compact eye-safe lidar system. Rev. Laser Eng., 23, 112–118.

    Google Scholar 

  • Steyn, D.G., M. Baldi, and R.M. Hoff, 1999: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Ocean. Technol., 16, 953–959.

    Google Scholar 

  • Stutz, J., B. Alicke, R. Ackermann, A. Geyer, A. White, and E. Williams, 2004: Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 1. Observations during the Texas Air Quality Study 2000. J. Geophys. Res., 109.

    Google Scholar 

  • Tatarskii, V.I., 1971: Effects of the Turbulent Atmosphere on Wave Propagation. Keter Press, Jerusalem.

    Google Scholar 

  • Tollerud, E.I., and Coauthors, 2008: Mesoscale moisture transport by the low-level jet during the IHOP field experiment. Mon. Wea. Rev., 136, 3781–3795.

    Google Scholar 

  • Tucker, S.C., and Coauthors, 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Ocean. Technol., 26, 673–688.

    Google Scholar 

  • _____, R.M. Banta, A.O. Langford, C.J. Senff, W.A. Brewer, E.J. Williams, B.M. Lerner, H.D. Osthoff, and R.M. Hardesty, 2010: Relationships of coastal nocturnal boundary layer winds and turbulence to Houston ozone concentrations during TexAQS 2006, J. Geophys. Res., 115, D10304.

    Google Scholar 

  • Turner, D., R. Ferrare, L.H. Brassuer, W. Feltz, and T. Tooman, 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Ocean. Technol., 19, 37–50.

    Google Scholar 

  • Vickers, D., and L. Mahrt, 2003: The cospectral gap and turbulent flux calculations. J. Atmos. Ocean. Technol., 20, 660–672.

    Google Scholar 

  • ——, 2006: A solution for flux contamination by mesoscale motions with very weak turbulence. Bound.-Layer Meteor., 118, 431–447.

    Google Scholar 

  • Vivekanandan, D.S., Zrnic, S.M. Ellis, R. Oye, A.V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388.

    Google Scholar 

  • Volkamer, R.M., S. Coburn, B. Dix, R. Sinreich, 2009: MAX-DOAS observations from ground, ship, and research aircraft: maximizing signal-to-noise to measure “weak” absorbers. Proc. of SPIE Vol. 7462 “Ultraviolet and Visible Ground- and Space-based Measurements, Trace Gases, Aerosols and Effects VI” (Eds. J.R. Herman, W. Gao) 746203.

    Google Scholar 

  • Wandinger, U., 2005: Raman lidar. Ch. 9 in Lidar: Range-Resolved optical Remote Sensing of the Atmosphere, ed. C. Weitkamp. Springer Science C Business Media, Inc., New York, pp. 241–272.

    Google Scholar 

  • Wakimoto, R.M. and J.L. McElroy, 1986: Lidar observations of elevated pollution layers over Los Angeles. J. Appl. Meteor., 25, 1583–1599.

    Google Scholar 

  • Weissmann, M.D., G.J. Mayr, R.M. Banta, and A. Gohm, 2004: Observations of the temporal evolution and spatial structure of the gap flow in the Wipp Valley on 2 and 3 October 1999. Mon. Wea. Rev., 132, 2684–2697.

    Google Scholar 

  • Weitkamp, C., 2005: Lidar: Range-Resolved optical Remote Sensing of the Atmosphere. Springer Science + Business Media, Inc., New York, 455 pp.

    Google Scholar 

  • Werner, C., 2005: Doppler wind lidar. Ch.12 in Lidar: Range-Resolved optical Remote Sensing of the Atmosphere, ed. C. Weitkamp. Springer Science +Business Media, Inc., New York, pp. 325–354.

    Google Scholar 

  • Westwater, E.R., J.B. Snider, and M.J. Falls, 1990: Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 GHz: a comparison of measurements and theory. Antennas and Propagation, IEEE Transactions, 38, 1569–1580.

    Google Scholar 

  • Westwater, E., 1997: Remote sensing of tropospheric temperature and moisture by integrated observing systems. Bull. Amer. Meteor. Soc., 78, 1991–2006.

    Google Scholar 

  • Wetzel, P.J., W.R. Cotton, and R.L. McAnelley, 1983: A long-lived mesoscale convective complex. Part II: Evolution and structure of the mature complex. Mon. Wea. Rev., 111, 1919–1937.

    Google Scholar 

  • Wetzel, M., M. Meyers, R. Borys, R. McAnelly, W. Cotton, A. Rossi, P. Frisbie, D.Nadler, D. Lowenthal, S. Cohn, and W. Brown, 2004: Mesoscale snowfall prediction and verification in mountainous terrain. Wea. Forecasting, 19, 806–828.

    Google Scholar 

  • White, A.B., C.J. Senff, and R.M. Banta, 1999: A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar. J. Atmos. Ocean. Technol., 16, 584–590.

    Google Scholar 

  • White, A.B., P.J. Neiman, F.M. Ralph, D.E. Kingsmill, and P.O.G. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment. J. Hydrometeor., 4, 264–282.

    Google Scholar 

  • Whiteman, C.D., 1990: Observations of thermally developed wind systems in mountainous terrain. Ch. 2 in Atmospheric Processes over Complex Terrain, ed. William Blumen, Meteorological Monogr., 23 (No. 45), 5–42.

    Google Scholar 

  • Whiteman, D.N., 2003: Examination of the traditional Raman lidar technique. II: Evaluating the ratios for water vapor and aerosols. Appl. Opt., 42, 2593–2608.

    Google Scholar 

  • Wilczak, J.M., and Coauthors, 1995: Contamination of wind profiler data by migrating birds: Characteristics of corrupted data and potential solutions. J. Atmos. Ocean. Technol., 12, 449–467.

    Google Scholar 

  • _____, E.E. Gossard, W.D. Neff, and W.L. Eberhard, 1996: Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress. Bound.-Layer Meteor., 78, 321–349.

    Google Scholar 

  • Wilson, D.A., and L.J. Miller, 1972: Atmospheric motion by Doppler radar. Ch. 13 in Remote Sensing of the Troposphere, Ed. V.E. Derr, U.S. Dept. of Commerce Report.

    Google Scholar 

  • _____, 1970: Doppler radar studies of boundary layer wind profiles and turbulence in snow conditions. Proc. 14th Conf. on Radar Meteor., Tucson, Amer. Meteor. Soc., 191–196.

    Google Scholar 

  • Wolfe, D., C. Fairall, M. Ratterree, W.A. Brewer, J. Intrieri, C. Senff, B. McCarty, S. Tucker, D. Law, A. White, and D. White, 2007: Shipboard multi-sensor wind profiles from NEAQS 2004: Radar wind profiler, high-resolution Doppler lidar, GPS rawinsonde. J. Geophys. Res., Vol. 112.

    Google Scholar 

  • Wolfe, D.E. and S.I. Gutman, 2000: Development of the NOAA/ERL ground-based GPS water vapor demonstration network: Design and initial results. J. Atmos. Ocean. Technol., 17, 426–440.

    Google Scholar 

  • Wulfmeyer, V., et al., 2008: The convective and orographically induced precipitation study. Bull. Amer. Meteor. Soc., 89, 1477–1486.

    Google Scholar 

  • Wulfmeyer, V., and Coauthors, 2008: The convective and orographically induced precipitation study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc, 89, 1477–1486.

    Google Scholar 

  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Ocean. Technol., 14, 1502–1512.

    Google Scholar 

  • Wyngaard, J.C., and O.R. Cote, 1971: Budgets of turbulent kinetic energy and temperature variance in atmospheric surface layer. J. Atmos. Sci., 28, 190-&.

    Google Scholar 

  • Wyngaard, J.C., 1986: Measurement physics. In Probing the Atmospheric Boundary Layer. D.H. Lenschow, ed. Amer. Meteor. Soc., pp. 5–18.

    Google Scholar 

  • Flamant, C., P. Drobinsky, L. Nance, R. Banta, L. Darby, J. Dusek, M. Hardesty, J. Pelon, and E. Richard, 2002: Gap flow in an Alpine valley during a shallow south foehn event: Observations, numerical simulations and hydraulic analog. Quart. J. Roy. Meteor Soc., 128, 1173–1210.

    Google Scholar 

  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor. Z., 17, 931–948.

    Google Scholar 

  • Zhong, S.Y., and J. Fast, 2003: An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake Valley. Mon. Wea. Rev., 131, 1301–1322.

    Google Scholar 

  • Zhong, S.Y., C.D. Whiteman, and X.D. Bian, 2004: Diurnal evolution of three-dimensional wind and temperature structure in California's Central Valley. J. Appl. Meteorol., 43, 1679–1699.

    Google Scholar 

Download references

Acknowledgments

Portions of the work in this chapter were performed under the NOAA Air Quality Program. The authors thank Drs. Gregory S. Poulos, Stephan De Wekker and two anonymous reviewers for helpful suggestions leading to significant improvements to the manuscript, and to Debra Dailey-Fisher for her expert figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Banta .

Editor information

Editors and Affiliations

Appendix

Appendix

To begin to understand Doppler processing it is necessary to probe deeper into sine-wave behavior. Recall that the three basic specifications for a sine function (Fig. 8.57, top panel) are its frequency f, its amplitude A, and its phase φ:

$$ {\text{s}}\left( {\text{t}} \right){ } = {\text{ A \, sin }}\left( {{2}\pi f \cdot {\text{t }} + { }\varphi } \right) $$

and that the frequency and wavelength are interchangeable, related by the speed of propagation of the wave according to the relationship: c = λ∙·f or λ = c/f. Radar and lidar have fundamentally different approaches to the Doppler determination.

Fig. 8.57
figure 57

Sine-wave signal as a function of time t (top). Outgoing signal at an instant of time as a function of distance x, reflecting off an object at distance D 1 . Return signal indicated by dashed curve (middle). Same as middle panel, except reflecting object is at distance D 2 (bottom)

The radar case is illustrated in Fig. 8.57. First consider for convenience a continuous-wave (CW) signal, and for now consider this signal at an instant of time as a function of the distance x from a source (Fig. 8.57, middle panel), instead of as a function of t. Also for convenience, consider the instant when the CW signal has initial phase φ0 = 0 at its source, i.e., where x = 0—the source would probably be the instrument antenna. Then, let the signal intercept a target at distance D1 and return to the source location. Note that where the signal intercepts D1, it is most often at a different phase from the phase at the source φ0, because in general D1 is not at an integral multiple of λ from the source. The signal “reflected” back to x = 0 has also returned at a φ different from φ0. If the target is not moving at D1 along x, we can change perspective and look at the “reflected” signal received back at x = 0 as a function of time. This transmitted source signal is a temporally varying sine wave of frequency f, as in the top panel of Fig. 8.57. The received signal back at the source position x = 0 as a function of time will also be the sine wave synchronized (at frequency f) with the transmitted signal, but with a constant phase offset Δφ1. (The mean particle/droplet motion produces a relatively tiny change in the frequency of the backscattered signal, but at radar wavelengths this frequency shift is not used to calculate Doppler velocities.)

If the target is located at a different distance D2, then the phase intercept at D2 will be changed (Fig. 8.57, bottom panel) and the phase offset received back at the source position will also have shifted, i.e., Δφ2 will be different from Δφ1. Where this argument becomes related to Doppler processing for radar, is if the target moves from D1 to D2 in a time of Δt, then the speed of movement is related to the rate of change of the phase offset, expressed as [(Δφ1 − Δφ2)/Δt]. This leads to a derivative expression d(Δφ)/dt, which is proportional to the speed of movement of the target (see Doviak and Zrnić 1993, Eq. 3.30; Battan 1973, Eq. 8.2; Rinehart 2010, p. 99). At Doppler radar λ’s, this phase-shift approach works for atmospheric returns, even though the scatterers are not a solid target as portrayed here, because (1) the scatterers in each pulse volume as a whole have not moved more than a distance equivalent to λ in the time interval between pulses, and (2) the distributed scatterers are not significantly rearranged in the time interval between shots in such a way that the phase information within each pulse volume is distorted. The latter could be stated as, for scatterers seen at radar λ’s, the atmospheric decorrelation time due to finescale turbulence motions is larger than the pulse repetition time of the measurements. Doppler radars therefore actually measure the phase shift from pulse to pulse, which has units of frequency, but is not really a measurement of the frequency of the signal. Therefore this method has sometimes been referred to as “pseudo-Doppler” processing.

For the much smaller λ’s of lidar these conditions are not met. The distributed aerosol-particle population does move a distance of more than the lidar λ in the time between successive pulses, and turbulent motions do rearrange the particles with respect to each other in such a way that the phase information in each range gate is too scrambled to be useful for velocity calculations. Lidar systems perform a more traditional Doppler approach, by directly measuring the frequency of the return signal and comparing it to the outgoing frequency, calculating the Doppler shift as in (8.5).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Banta, R.M. et al. (2013). Observational Techniques: Sampling the Mountain Atmosphere. In: Chow, F., De Wekker, S., Snyder, B. (eds) Mountain Weather Research and Forecasting. Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4098-3_8

Download citation

Publish with us

Policies and ethics