Skip to main content

Phytochemicals Against Drug-Resistant Microbes

  • Chapter
  • First Online:
Dietary Phytochemicals and Microbes

Abstract

Bacteria are able to adapt to undesirable changes in nutrient availability, environmental conditions and presence of antimicrobial products, as well as to immunological defenses. Antibiotic resistant bacteria are increasingly prevalent and consequently new antimicrobials are needed to control these pathogens. Serious infections caused by bacteria that have become resistant to commonly used antibiotics have become a major global healthcare problem in the twenty-first century. Development of resistance, including multidrug resistance (MDR), is unavoidable because it represents a particular aspect of the general microbial evolution. Many bacterial diseases, which were thought to have been eradicated from developing countries, might once again become a serious health problem. There is thus an urgent need for products that act on novel molecular targets that circumvent resistance mechanisms. In this context, plant secondary metabolites (phytochemicals) have already demonstrated their potential as antibacterials when used alone, and as synergists/potentiators of less effective products. Moreover, phytochemicals can be used where bacterial resistance mechanisms, such as MDR, make conventional treatments ineffective and also in the control of biofilms. The aim of this chapter is to cover the recent advances on phytochemical antibacterial activities against drug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adonizio AL, Downum K, Bennett BC, Mathee K (2006) Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol 105:427–435

    PubMed  Google Scholar 

  • Adonizio A, Kong K-F, Mathee K (2008) Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by south Florida plant extracts. Antimicrob Agents Chemother 52:198–203

    PubMed  CAS  Google Scholar 

  • Aeschlimann JR, Dresser LD, Kaatz GW, Rybak MJ (1999) Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrob Agents Chemother 43:335–340

    PubMed  CAS  Google Scholar 

  • Aksoy DY, Unal S (2008) New antimicrobial agents for the treatment of Gram-positive bacterial infections. Clin Microbiol Infect 14:411–420

    PubMed  CAS  Google Scholar 

  • Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050

    PubMed  CAS  Google Scholar 

  • Ali SM, Khan AA, Ahmed I, Musaddiq M, Ahmed KS, Polasa H et al (2005) Antimicrobial activities of eugenol and cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Microbiol Antimicrob 4:20

    PubMed  Google Scholar 

  • Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1:125–129

    PubMed  CAS  Google Scholar 

  • Ball AR, Casadei G, Samosorn S, Bremner JB, Ausubel FM, Moy TI et al (2006) Conjugating berberine to a multidrug efflux pump inhibitor creates an effective antimicrobial. ACS Chem Biol 1:594–600

    PubMed  CAS  Google Scholar 

  • Belofsky G, Carreno R, Lewis K, Ball A, Casadei G, Tegos GP (2006) Metabolites of the “smoke tree”, Dalea spinosa, potentiate antibiotic activity against multidrug-resistant Staphylococcus aureus. J Nat Prod 69:261–264

    PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Jensen PØ, Rasmussen TB, Christophersen L, Calum H, Hentzer M et al (2005) Garlic blocks quorum sensing and promotes clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880

    PubMed  CAS  Google Scholar 

  • Blanco AR, Sudano-Roccaro A, Spoto GC, Nostro A, Rusciano D (2005) Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob Agents Chemother 49:4339–4343

    PubMed  CAS  Google Scholar 

  • Brehm-Stecher BF, Johnson EA (2003) Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother 47:3357–3360

    PubMed  CAS  Google Scholar 

  • Campanella L, Delfini M, Ercole P, Iacoangeli A, Risuleo G (2002) Molecular characterization and action of usnic acid: a drug that inhibits proliferation of mouse polyomavirus in vitro and its main target is RNA transcription. Biochimie 84:329–334

    PubMed  CAS  Google Scholar 

  • Cantrell CL, Franzblau SG, Fischer NH (2001) Antimycobacterial plant terpenoids. Planta Med 67:685–694

    PubMed  CAS  Google Scholar 

  • Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920

    PubMed  CAS  Google Scholar 

  • Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Åberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5:913–919

    PubMed  CAS  Google Scholar 

  • Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 16:637–641

    Google Scholar 

  • Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nat Biotechnol 24:1541–1550

    PubMed  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  CAS  Google Scholar 

  • Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR et al (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175

    PubMed  CAS  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–832

    PubMed  CAS  Google Scholar 

  • Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320:100–103

    PubMed  CAS  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to agents. Nat Rev Drug Discov 2:114–122

    PubMed  CAS  Google Scholar 

  • Dellar JE, Cole MD, Waterman PG (1996) Antimicrobial abietane diterpenoids from Plectranthus elegans. Phytochemistry 41:735–738

    PubMed  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:834–847

    Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    PubMed  CAS  Google Scholar 

  • Fajardo A, Martínez-Martín N, Mercadillo M, Galán JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tümmler B, Baquero F, Martínez JL (2008) The neglected intrinsic resistome of bacterial pathogens. PLoS One 3:e1619

    PubMed  Google Scholar 

  • Feldberg RS, Chang SC, Kotik AN, Nadler M, Neuwirth Z, Sundstrom DC, Thompson NH (1988) In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob Agents Chemother 32:1763–1768

    PubMed  CAS  Google Scholar 

  • Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365

    PubMed  CAS  Google Scholar 

  • Fukai T, Kaitou K, Terada S (2005) Antimicrobial activity of 2-arylbenzofurans from Morus species against methicillin-resistant Staphylococcus aureus. Fitoterapia 76:708–711

    PubMed  CAS  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    PubMed  CAS  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834

    PubMed  CAS  Google Scholar 

  • Gibbons S (2004) Anti-staphylococcal plant natural products. Nat Prod Rep 21:263–277

    PubMed  CAS  Google Scholar 

  • Gibbons S, Udo EE (2000) The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother Res 14:139–140

    PubMed  CAS  Google Scholar 

  • Gibbons S, Moser E, Kaatz GW (2004) Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. Planta Med 70:1240–1242

    PubMed  CAS  Google Scholar 

  • Gilbert P, McBain AJ (2003) Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 16:189–208

    PubMed  CAS  Google Scholar 

  • Gilbert P, Collier PJ, Brown MRW (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy and stringent response. Antimicrob Agents Chemother 34:1865–1868

    PubMed  CAS  Google Scholar 

  • Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92:98S–110S

    PubMed  Google Scholar 

  • Girennavar B, Cepeda ML, Soni KA, Vikram A, Jesudhasan P, Javaprakasha GK, Pillai SD, Patil BS (2008) Grapefruit juice and its furocoumarins inhibits autoinducer signalling and biofilm formation in bacteria. Int J Food Microbiol 125:204–208

    PubMed  CAS  Google Scholar 

  • Givskov M, De Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J Bacteriol 178:6618–6622

    PubMed  CAS  Google Scholar 

  • Griffin SG, Wyllie SG, Markham JL, Leach DN (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14:322–332

    CAS  Google Scholar 

  • Guz NR, Stermitz FR, Johnson JB, Beeson TD, Willen S, Hsiang J-F, Lewis K (2001) Flavonolignan and flavone inhibitors of a Staphylococcus aureus multidrug resistance pump: structure–activity relationships. J Med Chem 44:261–268

    PubMed  CAS  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    PubMed  CAS  Google Scholar 

  • Heinzel M (1998) Phenomena of biocide resistance in microorganisms. Int Biodeterior Biodegrad 41:225–234

    CAS  Google Scholar 

  • Hu ZQ, Zhao WH, Asano N, Yoda Y, Hara Y, Shimamura T (2002) Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 46:558–560

    PubMed  CAS  Google Scholar 

  • Hurdle JG, O’Neill AJ, Mody L, Chopra I, Bradley SF (2005) In vivo transfer of high-level mupirocin resistance from Staphylococcus epidermidis to methicillin-resistant Staphylococcus aureus with failure of mupirocin prophylaxis. J Antimicrob Chemother 56:1166–1168

    PubMed  CAS  Google Scholar 

  • Iwasa K, Nanba H, Lee DU, Kang SI (1998) Structure-activity relationships of protoberberines having antimicrobial activity. Planta Med 64:748–751

    PubMed  CAS  Google Scholar 

  • Jennings BR, Ridler PJ (1983) Interaction of chromosomal stains with DNA. An electrofluorescence study. Biophys Struct Mech 10:71–79

    PubMed  CAS  Google Scholar 

  • Junghanns KT, Kneusel RE, Gröger D, Matern U (1998) Differential regulation and distribution of acridone synthase in Ruta graveolens. Phytochemistry 49:403–411

    PubMed  CAS  Google Scholar 

  • Kaatz GW (2005) Bacterial efflux pump inhibition. Curr Opin Investig Drugs 6:191–198

    PubMed  CAS  Google Scholar 

  • Khan IA, Mirza ZM, Kumar A, Verma V, Qazi GN (2006) Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 50:810–812

    PubMed  CAS  Google Scholar 

  • Kim K-J, Yu H-H, Cha J-D, Seo S-J, Choi N-Y, You Y-O (2005) Antibacterial activity of Curcuma longa L. against methicilin-resistant Staphylococcus aureus. Phytother Res 19:599–604

    PubMed  Google Scholar 

  • Kiran MD, Adikesavan NV, Cirioni O, Giacometti A, Silvestri C, Scalise G, Ghiselli R, Saba V, Orlando F, Shoham M, Balaban N (2008) Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Mol Pharmacol 73:1578–1586

    PubMed  CAS  Google Scholar 

  • Knowles JR, Roller S, Murray DB, Naidu AS (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 71:797–803

    PubMed  CAS  Google Scholar 

  • Kubo A, Lunde CS, Kubo I (1996) Indole and (E)-2-hexenal, phytochemical potentiators of polymyxins against Pseudomonas aeruginosa and Escherichia coli. Antimicrob Agents Chemother 40:1438–1441

    PubMed  CAS  Google Scholar 

  • Kuć J (1995) Phytoalexins, stress, metabolism, and disease resistance in plants. Annu Rev Phytopathol 33:275–297

    PubMed  Google Scholar 

  • Kumar A, Khan IA, Koul S, Koul JL, Taneja SC, Ali I, Ali F, Sharma S, Mirza M, Kumar M, Sangwan PL, Gupta P, Thota N, Qazi GN (2008) Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J Antimicrob Chemother 61:1270–1276

    PubMed  CAS  Google Scholar 

  • Kuźma L, Rózalski M, Walencka E, Rózalska B, Wysokińska H (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 14:31–35

    PubMed  Google Scholar 

  • Lebert I, Leroy S, Talon R (2007) Effect of industrial and natural biocides on spoilage, pathogenic and technological strains grown in biofilm. Food Microbiol 24:281–287

    PubMed  CAS  Google Scholar 

  • Lee HW, Koh YM, Kim J, Lee J-C, Seol S-Y, Cho D-T (2008) Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect 14:49–54

    PubMed  CAS  Google Scholar 

  • Levy SB (2002) Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 92:65S–71S

    PubMed  Google Scholar 

  • Lewis K (2000) Programmed death in bacteria. Microbiol Mol Biol Rev 64:503–514

    PubMed  CAS  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    PubMed  CAS  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56

    PubMed  CAS  Google Scholar 

  • Lewis K, Ausubel FM (2006) Prospects for plant-derived antibacterials. Nat Biotechnol 24:1504–1507

    PubMed  CAS  Google Scholar 

  • Lin YT, Kwon YI, Labbe RG, Shetty K (2005) Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. Appl Environ Microbiol 71:8558–8564

    PubMed  CAS  Google Scholar 

  • Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D, Chamberland S, Renau T, Leger R, Hecker S, Watkins W, Hoshino K, Ishida H, Lee VJ (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116

    PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Mah T-F, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    PubMed  CAS  Google Scholar 

  • Mandal P, Sinha Babu SP, Mandal NC (2005) Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia 76:462–465

    PubMed  CAS  Google Scholar 

  • Manefield M, Harris L, Rice SA, de Nys R, Kjelleberg S (2000) Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol 66:2079–2084

    PubMed  CAS  Google Scholar 

  • Manefield M, Rasmussen TB, Hentzer M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127

    PubMed  CAS  Google Scholar 

  • Markham PN, Westhaus E, Klyachko K, Johnson ME, Neyfakh AA (1999) Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob Agents Chemother 43:2402–2408

    Google Scholar 

  • Mason TL, Wasserman BP (1987) Inactivation of red beet betaglucan synthase by native oxidized phenolic compounds. Phytochemistry 26:2197–2202

    CAS  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action and resistance. Clin Microbiol Rev 12:147–179

    PubMed  CAS  Google Scholar 

  • Melzig MF, Bader G, Loose R (2001) Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Med 67:43–48

    PubMed  CAS  Google Scholar 

  • Mendoza L, Wilkens M, Urzua A (1997) Antimicrobial study of the resinous exudates and of diterpenoids and flavanoids isolated from some Chilean Pseudognaphalium (Astereaceae).J Ethnopharmacol 58:85–88

    PubMed  CAS  Google Scholar 

  • Mirzoeva OK, Grishanin RN, Calder PC (1997) Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol Res 152:239–246

    PubMed  CAS  Google Scholar 

  • Morel C, Stermitz FR, Tegos G, Lewis K (2003) Isoflavones as potentiators of antibacterial activity. J Agric Food Chem 51:5677–5679

    PubMed  CAS  Google Scholar 

  • Mori A, Nishino C, Enokib N, Tawataa S (1987) Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus. Phytochemistry 26:2231–2234

    CAS  Google Scholar 

  • Morris CE, Monier J-M (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17:215–234

    PubMed  CAS  Google Scholar 

  • Neyfakh AA, Borsch CM, Kaatz GW (1993) Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob Agents Chemother 37:128–129

    PubMed  CAS  Google Scholar 

  • Nishihara T, Okamoto T, Nishiyama N (2000) Biodegradation of didecyldimethylammonium chloride by Pseudomonas fluorescens TN4 isolated from activated sludge. J Appl Microbiol 88:641–647

    PubMed  CAS  Google Scholar 

  • Niu C, Gilbert ES (2004) Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 70:6951–6956

    PubMed  CAS  Google Scholar 

  • Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523

    PubMed  CAS  Google Scholar 

  • Nostro A, Marino A, Blanco AR, Cellini L, Di Giulio M, Pizzimenti F, Roccaro AS, Bisignano G (2009) In vitro activity of carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. J Med Microbiol 58:791–797

    PubMed  CAS  Google Scholar 

  • Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174

    PubMed  CAS  Google Scholar 

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831

    PubMed  CAS  Google Scholar 

  • Patel R (2005) Biofilms and antimicrobial resistance. Clin Orthop Relat Res 437:41–47

    PubMed  Google Scholar 

  • Pemberton N, Pinkner JS, Jones JM, Jakobsson L, Hultgren SJ, Almqvist F (2007) Functionalization of bicyclic 2-pyridones targeting pilus biogenesis in uropathogenic Escherichia coli. Tetrahedron Lett 48:4543–4546

    CAS  Google Scholar 

  • Plaper A, Golob M, Hafner I, Oblak M, Šolmajer T, Jerala R (2003) Characterization of quercetin binding site on DNA gyrase. Biochem Biophys Res Commun 306:530–536

    PubMed  CAS  Google Scholar 

  • Poole K (2000) Efflux mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother 44:2233–2241

    PubMed  CAS  Google Scholar 

  • Poulev A, O’Neal JM, Logendra S, Pouleva RB, Timeva V, Garvey AS et al (2003) Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J Med Chem 46:2542–2547

    PubMed  CAS  Google Scholar 

  • Rodríguez JC, Pastor E, Ruiz M, Flores E, Royo G (2007) Antibiotic resistance during therapy: mechanisms and means of control. Infect Disord Drug Targets 7:43–45

    PubMed  Google Scholar 

  • Rukayadi Y, Hwang JK (2006) Effect of coating the wells of a polystyrene microtiter plate with xanthorrhizol on the biofilm formation of Streptococcus mutans. J Basic Microbiol 46:410–415

    PubMed  CAS  Google Scholar 

  • Russell AD (2003) Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis 3:794–803

    PubMed  CAS  Google Scholar 

  • Sato M, Tanaka H, Oh-Uchi T, Fukai T, Etof H, Yamaguchi M (2004) Antibacterial activity of phytochemicals isolated from Erythrina zeyheri against vancomycin-resistant enterococci and their combinations with vancomycin. Phytother Res 18:906–910

    PubMed  CAS  Google Scholar 

  • Sato M, Tanaka H, Tani N, Nagayama M, Yamaguchi R (2006) Different antibacterial actions of isoflavones isolated from Erythrina poeppigiana against methicilin-resistant Staphylococcus aureus. Lett Appl Microbiol 43:243–248

    PubMed  CAS  Google Scholar 

  • Schmitz F-J, Fluit AC, Lückefahr M, Engler B, Hofmann B, Verhoef J, Heinz H-P, Hadding U, Jones ME (1998) The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in-vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 42:807–810

    PubMed  CAS  Google Scholar 

  • Shahverdi AR, Monsef-Esfahani HR, Tavasoli F, Zaheri A, Mirjani R (2007) Trans-cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of Clostridium difficile in vitro. J Food Sci 72:55–58

    Google Scholar 

  • Sherry E, Boeck H, Warnke PH (2001) Percutaneous treatment of chronic MRSA osteomyelitis with a novel plant-derived antiseptic. BMC Surg 1:1

    PubMed  CAS  Google Scholar 

  • Simões M, Bennett RN, Rosa EA (2009a) Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 26:746–757

    PubMed  Google Scholar 

  • Simões M, Simões LC, Vieira MJ (2009b) Species association increases biofilm resistance to chemical and mechanical treatments. Water Res 43:229–237

    PubMed  Google Scholar 

  • Sinha Babu SP, Sarkar D, Ghosh NK, Saha A, Sukul NC, Bhattacharya S (1997) Enhancement of membrane damage by saponins isolated from Acacia auriculiformis. Jpn J Pharmacol 75:451–454

    PubMed  CAS  Google Scholar 

  • Smith E, Williamson E, Zloh M, Gibbons S (2005) Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother Res 19:538–542

    PubMed  CAS  Google Scholar 

  • Smith EC, Williamson EM, Wareham N, Kaatz GW, Gibbons S (2007) Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry 68:210–217

    PubMed  CAS  Google Scholar 

  • Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264:388–393

    PubMed  CAS  Google Scholar 

  • Stavri M, Piddock LJV, Gibbons S (2007) Bacterial efflux pump inhibitors from natural sources.J Antimicrob Chemother 59:1247–1260

    PubMed  CAS  Google Scholar 

  • Stein AC, Sortino M, Avancini C, Zacchino S, von Poser G (2005) Ethnoveterinary medicine in the search for antimicrobial agents: antifungal activity of some species of Pterocaulon (Asteraceae). J Ethnopharmacol 99:211–214

    PubMed  Google Scholar 

  • Stermitz FR, Tawara-Matsuda J, Lorenz P, Mueller P, Zenewicz L, Lewis K (2000) 5′-methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus. J Nat Prod 63:1146–1149

    PubMed  CAS  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    PubMed  CAS  Google Scholar 

  • Strohl WR (2000) The role of natural products in a modern drug discovery program. Drug Discov Today 5:39–41

    PubMed  Google Scholar 

  • Suarez M, Haenni M, Canarelli S, Fisch F, Chodanowski P, Servis C, Michielin O, Freitag R, Moreillon P, Mermod N (2005) Structure-function characterization and optimization of a plant derived antibacterial peptide. Antimicrob Agents Chemother 49:3847–3857

    PubMed  CAS  Google Scholar 

  • Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V (2004) Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother 48:1968–1973

    PubMed  Google Scholar 

  • Sufya N, Allison DG, Gilbert P (2003) Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. J Appl Microbiol 95:1261–1267

    PubMed  CAS  Google Scholar 

  • Suresh P, Ingle VK, Vijava LV (1992) Antibacterial activity of eugenol in comparison with other antibiotics. J Food Sci Technol 29:254–256

    CAS  Google Scholar 

  • Süssmuth R, Haag R, Lingens F (1979) Chloramphenicol resistance of three different flavobacteria. J Antibiot 32:1293–1302

    PubMed  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    PubMed  CAS  Google Scholar 

  • Tanaka H, Sato M, Fujiwara S, Hirata M, Etoh H, Takeuchi H (2002) Antibacterial activity of isoflavonoids isolated from Erythrina variegata against methicilin-resistant Staphylococcus aureus. Lett Appl Microbiol 35:494–498

    PubMed  CAS  Google Scholar 

  • Tanaka H, Sato M, Oh-Uchi T, Yamaguchi R, Etoh H, Shimizu H, Sako M, Takeuchi H (2004) Antibacterial properties of a new isoflavonoid from Erythrina poeppigiana against methicillin-resistant Staphylococcus aureus. Phytomedicine 11:331–337

    PubMed  CAS  Google Scholar 

  • Tegos G, Stermitz FR, Lomovskaya O, Lewis K (2002) Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother 46:3133–3141

    PubMed  CAS  Google Scholar 

  • Tegos GP, Masago K, Aziz F, Higginbotham A, Stermitz FR, Hamblin MR (2008) Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob Agents Chemother 52:3202–3209

    PubMed  CAS  Google Scholar 

  • Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 34:S3–S10

    PubMed  Google Scholar 

  • Tierens KF, Thomma BP, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BP, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699

    PubMed  CAS  Google Scholar 

  • Trombetta D, Saija A, Bisignano G, Arena S, Caruso S, Mazzanti G, Uccella N, Castelli F (2002) Study on the mechanism of the antibacterial action of some plant α, β-saturated aldehydes. Lett Appl Microbiol 35:285–290

    PubMed  CAS  Google Scholar 

  • Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478

    PubMed  CAS  Google Scholar 

  • Van Bambeke F, Glupczynski Y, Plésiat P, Pechère JC, Tulkens PM (2003) Antibiotic efflux pumps in prokaryotic cells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J Antimicrob Chemother 51:1055–1065

    PubMed  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus phytoanticipins. Plant Cell 6:1191–1192

    PubMed  CAS  Google Scholar 

  • Vattem DA, Mihalik K, Crixell SH, McLean RJC (2007) Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 78:302–310

    PubMed  CAS  Google Scholar 

  • Verpoorte R (2000) Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol 52:253–262

    PubMed  CAS  Google Scholar 

  • Webber MA, Piddock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11

    PubMed  CAS  Google Scholar 

  • Weigel LM, Donlan RM, Shin DH, Jensen B, Clark NC, McDougal LK, Zhu W, Musser KA, Thompson J, Kohlerschmidt D, Dumas N, Limberger RJ, Patel JB (2007) High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother 51:231–238

    PubMed  CAS  Google Scholar 

  • Weiss EI, Lev-Dor R, Kashamn Y, Goldhar J, Sharon N, Ofek I (1998) Inhibiting interspecies coaggregation of plaque bacteria with a cranberry juice component. J Am Dent Assoc 129:1719–1723

    PubMed  CAS  Google Scholar 

  • Wentland EJ, Stewart PS, Huang CT, McFeters GA (1996) Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol Prog 12:316–321

    PubMed  CAS  Google Scholar 

  • Woodford N, Ellington MJ (2007) The emergence of antibiotic resistance by mutation. Clin Microbiol Infect 13:5–18

    PubMed  CAS  Google Scholar 

  • World Health Organization (2011) The World Medicines Situation 2011, 3rd edn, Geneva

    Google Scholar 

  • Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE, Choi NY, You YO (2005) Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food 8:454–461

    PubMed  CAS  Google Scholar 

  • Zhang Y, Lewis K (1997) Fabatins: new antimicrobial plant peptides. FEMS Microbiol Lett 149:59–64

    PubMed  CAS  Google Scholar 

  • Zhang YM, Rock CO (2004) Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. J Biol Chem 279:30994–31001

    PubMed  CAS  Google Scholar 

  • Zhao WH, Hu ZQ, Hara Y, Shimamura T (2001) Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1737–1742

    PubMed  CAS  Google Scholar 

  • Zhao W-H, Hu Z-Q, Hara Y, Shimamura T (2002) Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother 46:2266–2268

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by Operational Programme for Competitiveness Factors – COMPETE and by FCT – Portuguese Foundation for Science and Technology through Project Bioresist – PTDC/EBB-EBI/105085/2008 and the Post-Doc grant awarded to Lúcia C. Simões (SFRH/BPD/81982/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Simões .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Simões, M., Lemos, M., Simões, L.C. (2012). Phytochemicals Against Drug-Resistant Microbes. In: Patra, A. (eds) Dietary Phytochemicals and Microbes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3926-0_6

Download citation

Publish with us

Policies and ethics