Skip to main content

Cell Gene Expression Signatures in Inflammatory Breast Cancer

  • Chapter
  • First Online:
Inflammatory Breast Cancer: An Update

Abstract

Since publication of the landmark report by Al-hajj et al. provocatively suggesting that breast cancers may be organized in a cellular hierarchy similar to that described for hematogenous malignancies [1], numerous studies have sought to characterize the small, undifferentiated fraction of cells at the top of the hierarchy purported to give rise to all of the others. It is speculated that if these cells are in fact responsible for repopulating the tumor, the represent a critical target in cancer eradication. Many of the studies describing the phenotype of putative cancer stem cells suggest that they possess aggressive characteristics associated with treatment resistance, invasion, and metastases [2–5]. More recently, these cells have been described as most prevalent in tumors with poor prognostic features, including estrogen receptor (ER)–negative breast cancer, metaplastic breast cancer, and inflammatory breast cancer (IBC) [6–8]. Gene expression array analysis has become a valuable tool for grouping tumor types with similar features and prognosis and for elucidating the biology of specific subtypes. This chapter focuses on the progression of studies examining the gene expression profiles of IBC and the intersection of these efforts with similar work exploring the biology of cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALDH1:

aldehyde dehydrogenase

AJCC:

American Joint Committee on Cancer

DLI:

dermal lymphatic invasion

ER:

estrogen receptor

IBC:

inflammatory breast cancer

IGS:

invasive gene signature

NF-κB:

nuclear factor–kappaB

RT-PCR:

reverse-transcription polymerase chain reaction

References

  1. Al-Hajj M, Wicha MS et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  2. Lacerda L, Pusztai L et al (2010) The role of tumor initiating cells in drug resistance of breast cancer: implications for future therapeutic approaches. Drug Resist Updat 13(4–5):99–108

    Article  PubMed  CAS  Google Scholar 

  3. Woodward WA, Chen MS et al (2005) On mammary stem cells. J Cell Sci 118(Pt 16):3585–3594

    Article  PubMed  CAS  Google Scholar 

  4. Woodward WA, Sulman EP (2008) Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev 27(3):459–470

    Article  PubMed  CAS  Google Scholar 

  5. Xu W, Debeb BG et al (2010) Potential targets for improving radiosensitivity of breast tumor-initiating cells. Anticancer Agents Med Chem 10(2):152–156

    PubMed  Google Scholar 

  6. Creighton CJ, Li X et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106(33):13820–13825

    Article  PubMed  CAS  Google Scholar 

  7. Hennessy BT, Gonzalez-Angulo AM et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69(10):4116–4124

    Article  PubMed  CAS  Google Scholar 

  8. Herschkowitz JI, Zhao W et al (2011) Breast cancer special feature: comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci USA June 1, PMID: 21633010

    Google Scholar 

  9. Neve RM, Chin K et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  PubMed  CAS  Google Scholar 

  10. Charafe-Jauffret E, Ginestier C et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313

    Article  PubMed  CAS  Google Scholar 

  11. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25

    Article  PubMed  Google Scholar 

  12. Stuelten CH, Mertins SD et al (2010) Complex display of putative tumor stem cell markers in the NCI60 tumor cell line panel. Stem Cells 28(4):649–660

    Article  PubMed  CAS  Google Scholar 

  13. Perou CM, Sorlie T et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  14. Prat A, Parker JS et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68

    Article  PubMed  Google Scholar 

  15. Sorlie T, Perou CM et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  CAS  Google Scholar 

  16. Prat A, Perou CM (2010) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5(1):5–23

    Article  PubMed  Google Scholar 

  17. Lim E, Vaillant F et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913

    Article  PubMed  CAS  Google Scholar 

  18. Van Laere S, Limame R et al (2010) Is there a role for mammary stem cells in inflammatory breast carcinoma?: a review of evidence from cell line, animal model, and human tissue sample experiments. Cancer 116(11 Suppl):2794–2805

    Article  PubMed  Google Scholar 

  19. Woodward WA, Debeb BG et al (2010) Overcoming radiation resistance in inflammatory breast cancer. Cancer 116(11 Suppl):2840–2845

    Article  PubMed  Google Scholar 

  20. Charafe-Jauffret E, Ginestier C et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55

    Article  PubMed  CAS  Google Scholar 

  21. Xiao Y, Ye Y et al (2008) The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173(2):561–574

    Article  PubMed  CAS  Google Scholar 

  22. Bertucci F, Finetti P et al (2005) Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 65(6):2170–2178

    Article  PubMed  CAS  Google Scholar 

  23. Bertucci F, Finetti P et al (2004) Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 64(23):8558–8565

    Article  PubMed  CAS  Google Scholar 

  24. Dressman HK, Hans C et al (2006) Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy. Clin Cancer Res 12(3 Pt 1):819–826

    Article  PubMed  CAS  Google Scholar 

  25. Van Laere SJ, Van den Eynden GG et al (2006) Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat 95(3):243–255

    Article  PubMed  CAS  Google Scholar 

  26. Van Laere S, Van der Auwera I et al (2007) Distinct molecular phenotype of inflammatory breast cancer compared to non-inflammatory breast cancer using Affymetrix-based genome-wide gene-expression analysis. Br J Cancer 97(8):1165–1174

    Article  PubMed  Google Scholar 

  27. Van Laere SJ, Van der Auwera I et al (2006) Nuclear factor-kappaB signature of inflammatory breast cancer by cDNA microarray validated by quantitative real-time reverse transcription-PCR, immunohistochemistry, and nuclear factor-kappaB DNA-binding. Clin Cancer Res 12(11 Pt 1):3249–3256

    Article  PubMed  Google Scholar 

  28. Van Laere S, Van der Auwera I et al (2005) Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Res Treat 93(3):237–246

    Article  PubMed  CAS  Google Scholar 

  29. Bieche I, Lerebours F et al (2004) Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res 10(20):6789–6795

    Article  PubMed  CAS  Google Scholar 

  30. Iwamoto T, Bianchini G et al (2011) Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat 125(3):785–795

    Article  PubMed  CAS  Google Scholar 

  31. Nguyen DM, Sam K et al (2006) Molecular heterogeneity of inflammatory breast cancer: a hyperproliferative phenotype. Clin Cancer Res 12(17):5047–5054

    Article  PubMed  CAS  Google Scholar 

  32. Shipitsin M, Campbell LL et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11(3):259–273

    Article  PubMed  CAS  Google Scholar 

  33. Dontu G, Abdallah WM et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270

    Article  PubMed  CAS  Google Scholar 

  34. DiMeo TA, Anderson K et al (2009) A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 69(13):5364–5373

    Article  PubMed  CAS  Google Scholar 

  35. Dontu G, Wicha MS (2005) Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 10(1):75–86

    Article  PubMed  Google Scholar 

  36. Honeth G, Bendahl PO et al (2008) The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10(3):R53

    Article  PubMed  Google Scholar 

  37. Liu R, Wang X et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy A. Woodward M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Woodward, W.A. (2012). Cell Gene Expression Signatures in Inflammatory Breast Cancer. In: Ueno, N., Cristofanilli, M. (eds) Inflammatory Breast Cancer: An Update. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3907-9_20

Download citation

Publish with us

Policies and ethics