Skip to main content

Successes and Failures in Plant-Insect Interactions: Is it Possible to Stay One Step Ahead of the Insects?

  • Chapter
  • First Online:
Arthropod-Plant Interactions

Part of the book series: Progress in Biological Control ((PIBC,volume 14))

Abstract

Arthropods are the most widespread and diverse group of animals, with an estimated four to six million species worldwide (Novotny et al. 2002). Whilst only a small percentage of arthropods are classified as phytophagous pests they cause major devastation of crops, destroying around 14% of the world annual crop production, contributing to 20% of losses of stored grains and causing around US$100 billion of damage each year (Nicholson 2007). Thus herbivorous insects and mites are a major threat to food production for livestock and human consumption. Larval forms of lepidopterans are considered the most destructive insects, with about 40% of all insecticides directed against heliothine species (Brooks and Hines 1999), although, many species within the Orders Acrina, Coleoptera, Diptera, Hemiptera, Orthoptera and Thysanoptera are also considered agricultural pests with significant economic impact. Insect pests may cause direct damage by feeding on crop plants in the field or infesting stored products, so competing with humans for plants as a food resource. Some cause indirect damage, especially the sap feeding insects by transmitting viral diseases or secondary microbial infections of crop plants (Ferry and Gatehouse 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol 57:189–202

    PubMed  CAS  Google Scholar 

  • Amman K (2010) Biodiversity and genetically modified crops. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB Int, Oxford, pp 240–265

    Google Scholar 

  • Ananieva KI, Ananiev ED (1999) Effect of methyl ester of jasmonic acid and benzylaminopurine on growth and protein profile of excised cotyledons of Cucurbita pepo L. (zucchini). Biol Plant 42:549–557

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  • Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Res Commun 277:305–310

    PubMed  CAS  Google Scholar 

  • Armstrong CL, Parker GB, Pershing JC, Brown SM, Sanders PR, Duncan DR, Stone T, Dean DA, DeBoer DL, Hart J, Howe AR, Morrish FM, Pajeau ME, Petersen WL, Reich BJ, Rodriguez R, Santino CG, Sato SJ, Schuler W, Sims SR, Stehling S, Tarochione LJ, Fromm ME (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn evens expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci 35:550–557

    Google Scholar 

  • Arpaia S (1997) Ecological impact of Bt-transgenic plants: 1. Assessing possible effects of CryIIIB toxin on honey bee (Apis mellifera) colonies. J Genet Breed 50:315–319

    Google Scholar 

  • Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant-insect interactions. Curr Opin Plant Biol 4(4):351–358

    PubMed  CAS  Google Scholar 

  • Bauer LS (1990) Response of the cottonwood leaf beetle (Coleoptera: Chrysomelidae) to Bacillus thuringiensis var. San Diego. Environ Entomol 19:428–431

    Google Scholar 

  • Bell HA, Fitches EC, Marris GC, Bell J, Edwards JP, Gatehouse JA, Gatehouse AMR (2001) Transgenic crop enhances beneficial biocontrol agent performance. Transgen Res 10:35–42

    CAS  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defense-mechanisms. New Phytol 127:617–633

    CAS  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    PubMed  CAS  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspective. Physiol Mol Plant Pathol 51:347–366

    CAS  Google Scholar 

  • Bown DP, Wilkinson HS, Gatehouse JA (1997) Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigara, are members of complex multigene families. Insect Biochem Mol Biol 27:625–638

    PubMed  CAS  Google Scholar 

  • Boyko EV, Smith CM, Thara VK, Bruno JM, Deng Y, Starkey SR, Klaahsen DL (2006) Molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pti-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 99:1430–1445

    PubMed  CAS  Google Scholar 

  • Broadway RM (1997) Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. J Insect Physiol 43(9):855–874

    PubMed  CAS  Google Scholar 

  • Brooks EM, Hines ER (1999) Viral biopesticides for heliothine control- fact or fiction. Today’s Life Sci: 38–44

    Google Scholar 

  • Brotman Y, Silberstein L, Kovalski I, Perin C, Dogimont C, Pitrat M, Klingler J, Thompson GA, Perl-Treves R (2002) Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance. Theor Appl Genet 104:1055–1063

    PubMed  CAS  Google Scholar 

  • Carson R (1962) Silent spring. Houghton Mifflin, Boston

    Google Scholar 

  • Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM (2009) Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol 19:229–234

    PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004) Bacterial insecticidal toxins. Crit Rev Microbiol 30:33–54

    PubMed  CAS  Google Scholar 

  • Chen WQ, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou GZ, Whitham SA, Budworth PR, Tao Y, Xie ZY, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Raikhel NV (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3(1):1–9

    PubMed  CAS  Google Scholar 

  • Chrispeels M, Sadava D (2003) Plants, genes and crop biotechnology. ASPB/Jones and Bartlett Publ, Boston

    Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308

    PubMed  CAS  Google Scholar 

  • Chu SH, Noh H, Kim S, Kim KH, Hong SW, Lee H (2010) Enhanced drought tolerance in Arabidopsis via genetic manipulation aimed at the reduction of glucosamine-induced ROS generation. Plant Mol Biol 74:493–502

    PubMed  CAS  Google Scholar 

  • Crecchio C, Stotzky G (1998) Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subspecies kurstaki bound to humic acids from soil. Soil Biol Biochem 30:463–470

    CAS  Google Scholar 

  • Dale PJ (2002) The environmental impact of genetically modified (GM) crops: a review. J Agric Sci 138:245–248

    Google Scholar 

  • De Leo F, Bonade-Bottino M, Ceci LR, Gallerani R, Jouanin L (2001) Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Mol Biol 31:593–602

    PubMed  Google Scholar 

  • de Maagd RA, Bosch D, Stiekema W (1999) Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends Plant Sci 4:9–13

    PubMed  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–1999

    PubMed  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937

    PubMed  Google Scholar 

  • Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176

    PubMed  CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    PubMed  CAS  Google Scholar 

  • Denolf P (1996) Isolation, cloning and characterisation of Bacillus thuringiensis delta-endotoxin receptors in Lepidoptera. PhD, University of Gent, Belgium

    Google Scholar 

  • Devine GJ, Furlong MJ (2007) Insecticide use: contexts and ecological consequences. Agric Hum Values 24:281–306

    Google Scholar 

  • Dicke M, Agrawal AA, Bruin J (2003) Plants talk, but are they deaf? Trends Plant Sci 8(9):403–405

    Google Scholar 

  • Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045

    CAS  Google Scholar 

  • Dreher KA, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 9:787–822

    Google Scholar 

  • Du JP, Foissac X, Carss A, Gatehouse AMR, Gatehouse JA (2000) Ferritin acts as the most abundant binding protein for snowdrop lectin in the midgut of rice brown planthoppers (Nilaparvata lugens). Insect Biochem Mol Biol 30:297–305

    PubMed  CAS  Google Scholar 

  • Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    PubMed  CAS  Google Scholar 

  • Feng W, Shi Y, Li M, Zhang M (2003) Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding. Nat Struct Biol 10:972–978

    PubMed  CAS  Google Scholar 

  • Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    PubMed  Google Scholar 

  • Ferro DN, Gerlernter WD (1989) Toxicity of a new strain of Bacillus thuringiensis to Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 82:750–755

    Google Scholar 

  • Ferry N, Gatehouse AMR (2010) Transgenic crop plants for resistance to biotic stress. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgen crop plants: vol 2. Utilization and biosafety. Spinger, Berlin/Heidelberg

    Google Scholar 

  • Ferry N, Edwards MG, Mulligan EA, Emami K, Petrova A, Frantescu M, Davison GM, Gatehouse AMR (2003) Engineering resistance to insect pests. In: Christou P, Klee H (eds) Handbook of plant biotechnology. Wiley, New York, pp 373–394

    Google Scholar 

  • Ferry N, Edwards MG, Gatehouse JA, Capell T, Christou P, Gatehouse AMR (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgen Res 15:13–19

    CAS  Google Scholar 

  • Ferry N, Mulligan EA, Majerus MEN, Gatehouse AMR (2007) Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles. Transgen Res 16:795–812

    CAS  Google Scholar 

  • Ferry N, Stavroulakis S, Guan W, Davison GM, Gatehouse JA, Gatehouse AMR (2011) Molecular interactions between wheat and the insect herbivore Sitobion avenae (cereal aphid); analysis of changes to the wheat proteome. Proteomics 11:1985–2002

    PubMed  CAS  Google Scholar 

  • Feyereisen R (1995) Molecular biology of insecticide resistance. Toxicol Lett 82(83):83–90

    PubMed  Google Scholar 

  • Ffrench-Constant RH, Daborn PJ, Le Goff G (2004) The genetics and genomics of insecticide resistance. Trends Genet 20:163–170

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant RH, Dowling A, Waterfiled NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451

    PubMed  CAS  Google Scholar 

  • Fitches E, Edwards MJ, Mee C, Grishan E, Gatehouse AMR, Edwards JP, Gatehouse JA (2004) Fusion proteins containing neurotoxins as insect control agents: snowdrop lectin delivers fused insecticidal spider venom neurotoxin to insect haemolymph following oral ingestion. J Insect Physiol 50:61–71

    PubMed  CAS  Google Scholar 

  • Fitches EC, Bell HA, Powell ME, Back E, Sargiotti C, Weaver RJ, Gatehouse JA (2010) Insecticidal activity of scorpion toxin (ButaIT) and snowdrop lectin (GNA) containing fusion proteins towards pest species of different orders. Pest Manage Sci 66:74–83

    CAS  Google Scholar 

  • Fletcher, MR, Hunter K, Barnett EA, Sharp EA (2000) Pesticide poisoning of animals 1998: Investigations of suspected incidents in the United Kingdom. A Report of the Environment Panel of the Advisory Committee on Pesticides. London, UK, MAFF, (PB4786), 54 p

    Google Scholar 

  • Flor HH (1955) Host-parasite interaction in flax rust – its genetics and other implications. Phytopathology 45:680–685

    Google Scholar 

  • Foissac X, Loc NT, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46:573–583

    PubMed  CAS  Google Scholar 

  • Forcada C, Alcacer E, Garcera MD, Tato A, Martinez R (1999) Resistance to Bacillus thuringiensis Cry1Ac toxin in three strains of Heliothis virescens: proteolytic and SEM study of the larval midgut. Arch Insect Biochem Physiol 42:51–63

    PubMed  CAS  Google Scholar 

  • Frey M, Stettner C, Pare PW, Schmelz EA, Tumlinson JH, Gierl A (2000) An herbivore elicitor activates the gene for indole emission in maize. Proc Natl Acad Sci USA 97:14801–14806

    PubMed  CAS  Google Scholar 

  • Gahan LJ, Gould F, Heckel DG (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293:857–860

    PubMed  CAS  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. Tansley review No 140. New Phytol 156:145–169

    CAS  Google Scholar 

  • Gatehouse JA, Gatehouse AMR (1999) Genetic engineering of plants for insect resistance. In: Rechcigl JE, Reichcigl NA (eds) Biological and biotechnological control of insect pests. CRC Press LLC, Boca Raton, pp 211–241

    Google Scholar 

  • Gatehouse AMR, Hilder VA, Powell KS, Wang M, Davison GM, Gatehouse LN, Down RE, Edmonds HS, Boulter D, Newell CA, Merryweather A, Hamilton WDO, Gatehouse JA (1994) Insect-resistant transgenic plants – choosing the gene to do the job. Biochem Soc Trans 22:944–949

    PubMed  CAS  Google Scholar 

  • Gatehouse AMR, Powell K, Peumans W, Damme EV, Gatehouse JA (1995) Insecticidal properties of plant lectins: their potential in plant protection. In: Pusztai A, Bardocz S (eds) Lectins biomedical perspectives. Taylor & Francis, London, pp 35–57

    Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63

    CAS  Google Scholar 

  • Gatehouse AMR, Ferry N, Raemaekers RJM (2002) The case of the Monarch butterfly: a verdict is returned. Trends Genet 18:249–251

    PubMed  CAS  Google Scholar 

  • Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011) Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos Trans R Soc B 366:1438–1452

    CAS  Google Scholar 

  • Geddes J, Eudes F, Laroche A, Selinger LB (2008) Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics 8:545–554

    PubMed  CAS  Google Scholar 

  • Gill SS, Cowles EA, Francis V (1995) Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the Lepidopteran insect Heliothis virescens. J Biol Chem 270:27277–27282

    PubMed  CAS  Google Scholar 

  • Giri AP, Wünsche H, Mitra S, Zavala JA, Muck A, Svatoš A, Baldwin IT (2006) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant’s proteome. Plant Physiol 142:1621–1641

    PubMed  CAS  Google Scholar 

  • Glinwood RT, Gradin T, Karpinska B, Ahmed E, Jonsson LMV, Ninkovic V (2007) Aphid acceptance of barley exposed to volatile phytochemicals differs between plants exposed in daylight and darkness. Plant Signal Behav 2:205–210

    Google Scholar 

  • Gorantla M, Babu PR, Lachagari VB, Reddy AM, Wusirika R, Bennetzen JL, Reddy AR (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot 58:253–265

    PubMed  CAS  Google Scholar 

  • Graham J, McNicol RJ, Greig K (1995) Towards genetic based insect resistance in strawberry using the Cowpea trypsin inhibitor gene. Ann Appl Biol 127:163–173

    CAS  Google Scholar 

  • Groot AT, Dicke M (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31:387–406

    PubMed  CAS  Google Scholar 

  • Gurr GM, Kvedaras OL (2010) Synergizing biological control: scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biol Control 52:198–207

    Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol Syst 8:157–178

    Google Scholar 

  • Harborne J (1998) Introduction to ecological chemistry. Academic, London

    Google Scholar 

  • He KJ, Wang ZY, Zhang YJ (2009) Monitoring Bt resistance in the field: China as a case study. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB Int, Oxford, pp 344–360

    Google Scholar 

  • Heimovaara-Dijkstra S, Testerink C, Wang M (2000) Mitogen-activated protein kinase and abscisic acid signal transduction. Results Probl Cell Differ 27:131–144

    PubMed  CAS  Google Scholar 

  • Hellmich RL, Siegfried BD, Sears MK, Stanley-Horn DE, Daniels MJ, Mattila HR, Spencer T (2001) Monarch larvae sensitivity to Bacillus thuringiensis-purified proteins and pollen. Proc Natl Acad Sci USA 98:11925–11930

    PubMed  CAS  Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defence-related plant mRNAs. Plant Physiol 125:683–700

    PubMed  CAS  Google Scholar 

  • Hieter P, Boguski M (1997) Functional genomics: it’s all how you read it. Science 278:601–602

    PubMed  CAS  Google Scholar 

  • Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487

    Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163

    CAS  Google Scholar 

  • Hilker M, Meiners T (2002) Induction of plant responses to oviposition and feeding by herbivorous arthropods: a comparison. Entomol Exp Appl 104:181–192

    CAS  Google Scholar 

  • Hirt H (1997) Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci 2:11–15

    Google Scholar 

  • Hui DQ, Iqbal J, Lehmann K, Gase K, Saluz HP, Baldwin IT (2003) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata: V. Microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs. Plant Physiol 131:1877–1893

    PubMed  CAS  Google Scholar 

  • Igawa T, Tokai T, Kudo T, Yamaguchi I et al (2005) A wheat xylanase inhibitor gene, Xip-I, but not Taxi-I, is significantly induced by biotic and abiotic signals that trigger plant defense. Biosci Biotechnol Biochem 69:1058–1063

    PubMed  CAS  Google Scholar 

  • Jackson RE, Bradley JR Jr, Van Duyn JW (2004) Performance of feral and Cry1Ac-selected Helicoverpa zea (Lepidoptera: Noctuidae) strains on transgenic cottons expressing either one or two Bacillus thuringiensis ssp. kurstaki proteins under greenhouse conditions. J Entomol Sci 39:46–55

    CAS  Google Scholar 

  • James C (2007) Global status of commercialized biotech/GM crops. ISAAA briefs 37. ISAAA, Ithaca

    Google Scholar 

  • James C (2010) Global status of commercialized biotech/GM crops: 2010. ISAAA brief no. 42. ISAAA, Ithaca

    Google Scholar 

  • Jang CS, Johnson JW, Seo YW (2005) Differential expression of TaLTP3 and TaCOMT1 induced by Hessian fly larval infestation in a wheat line possessing H21 resistance gene. Plant Sci 168:1319–1326

    CAS  Google Scholar 

  • Jansen JJ, Allwood JW, Marsden-Edwards E, van der Putten WH, Goodacre R, van Dam NM (2009) Metabolomic analysis of the interaction between plants and herbivores. Metabolomics 5:150–161

    CAS  Google Scholar 

  • Jonak C, Okresz L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 5:415–424

    PubMed  CAS  Google Scholar 

  • Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43:885–895

    PubMed  CAS  Google Scholar 

  • Jouanin L, Bonade-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131:1–11

    CAS  Google Scholar 

  • Kaloshian I, Walling LL (2005) Hemipterans as plant pathogens. Annu Rev Plant Biol 43:491–521

    CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, Chicago

    Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    PubMed  CAS  Google Scholar 

  • Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E, Cobb MH (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605–615

    PubMed  CAS  Google Scholar 

  • Knight PJK, Crickmore N, Ellar DJ (1994) The receptor for Bacillus thuringiensis Cryla(C) delta-endotoxin in the brush-border membrane of the Lepidopteran Manduca sexta is aminopeptidase-N. Mol Microbiol 11:429–436

    PubMed  CAS  Google Scholar 

  • Knoester M, van Loon LC, van den Heuvel J, Hennig J, BolJF LHJM (1998) Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci USA 95:1933–1937

    PubMed  CAS  Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the phytochrome-interacting bHLH factor PIF4. Curr Biol 19:408–413

    PubMed  CAS  Google Scholar 

  • Krieg A, Hugner AM, Lagenbruch GA, Schnetter W (1983) Bacillus thuringiensis var. tenebrionis: Ein neuer gegenuber Larven von Coleopteran wirksamer Pathotyp. Z Angew Entomol 96:500–508

    Google Scholar 

  • Kültz D (1998) Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. J Mol Evol 46:571–588

    PubMed  Google Scholar 

  • Leple JC, Bonadebottino M, Augustin S, Pilate G, Letan VD, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera, Chrysomelidae) of transgenic poplars expressing a cysteine proteinase-inhibitor. Mol Breed 1:319–328

    CAS  Google Scholar 

  • Li XC, Berenbaum MR, Schuler MA (2000) Molecular cloning and expression of CYP6B8: a xanthotoxin-inducible cytochrome P450 cDNA from Helicoverpa zea. Insect Biochem Mol Biol 30:75–84

    PubMed  CAS  Google Scholar 

  • Li XC, Schuler MA, Berenbaum MR (2002) Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419(6908):712–715

    Google Scholar 

  • Ligterink W, Kroj T, zur Nieden U, Hirt H, Scheel D (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276:2054–2057

    PubMed  CAS  Google Scholar 

  • Lippert D, Chowrira S, Ralph SG, Zhuang J, Aeschliman D, Ritland C, Ritland K, Bohlmann J (2007) Conifer defense against insects: proteome analysis of Sitka spruce (Picea sitchensis) bark induced by mechanical wounding or feeding by white pine weevils (Pissodes strobi). Proteomics 7:248–270

    PubMed  CAS  Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214–214

    PubMed  CAS  Google Scholar 

  • Lucyshyn D, Wigge PA (2009) Plant development: PIF4 integrates diverse environmental signals. Curr Biol 19:265–266

    Google Scholar 

  • Luo K, Sangadala S, Masson L, Mazza A, Brousseau R, Adang MJ (1997) The Heliothis virescens 170 kDa aminopeptidase functions as “receptor A” by mediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation. Insect Biochem Mol Biol 27:735–743

    PubMed  CAS  Google Scholar 

  • Ma G, Roberts H, Sarjan M, Featherstone N, Lahnstein J, Akhurst R, Schmidt O, Ma G, Roberts H, Sarjan M, Featherstone N, Lahnstein J, Akhurst R, Schmidt O (2005) Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochem Mol Biol 35:729–739

    PubMed  CAS  Google Scholar 

  • MacIntosh SC, Stone TB, Sims SR, Hunst PL, Green-plate JT, Marrone PG, Perlak FJ, Fischhoff DA, Fuchs RL (1990) Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J Invertebr Pathol 56:258–266

    PubMed  CAS  Google Scholar 

  • Malone LA, Burgess EPJ (2009) Impact of genetically modified crops on pollinators. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB Int, Oxford, pp 199–225

    Google Scholar 

  • Malone LA, Pham-Delegue M-H (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Adidologie 32:287–304

    CAS  Google Scholar 

  • Malone LA, Gatehouse AMR, Barratt BIP (2008) Beyond Bt: alternative strategies for insect-resistant crops. In: Romeis J, Shelton T, Kennedy G (eds) Integration of insect-resistant genetically modified crops within integrated pest management programs. Series on progress in biological control. Springer, Berlin

    Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93

    CAS  Google Scholar 

  • Maserti BE, Del Carratore R, Della Croce CM, Podda A, Migheli Q, Froelicher Y, Luro F, Morillon R, Ollitrault P, Talon M, Rossignol M (2011) Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticaeand methyl jasmonate in citrus leaves. J Plant Physiol 168:392–402

    PubMed  CAS  Google Scholar 

  • Menges M, Doczi R, Okresz L, Morandini P, Mizzi L, Soloviev M, Murray JAH, Bogre L (2008) Comprehensive gene expression atlas for the Arabidopsis MAP kinase signaling pathways. New Phytol 179:643–666

    PubMed  CAS  Google Scholar 

  • Mikołajczyk M, Awotunde OS, Muszyńska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 121:165–178

    Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    PubMed  CAS  Google Scholar 

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defence pathways. Plant Physiol 125:1074–1085

    PubMed  CAS  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch Insect Biochem Physiol 51:182–203

    PubMed  CAS  Google Scholar 

  • Nagamatsu Y, Toda S, Koike T, Miyoshi Y, Shigematsu S, Kogure M (1998) Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin. Biosci Biotechnol Biochem 62:727–734

    PubMed  CAS  Google Scholar 

  • Nauen R, Ebbinghaus-Kintscher U, Elbert A, Jeschke P, Tietjen K (2001) Acetylcholine receptors as sites for developing neonicotinoid insecticides. In: Ishaaya I (ed) Biochemical sites important in insecticide action and resistance. Springer, Berlin/Heidelberg, pp 77–105

    Google Scholar 

  • Nicholson GM (2007) Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49:413–422

    PubMed  CAS  Google Scholar 

  • Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    PubMed  CAS  Google Scholar 

  • Oppert B, Kramer KJ, Johnson DE, MacIntosh SC, McGaughey WH (1994) Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem Biophys Res Commun 198:940–947

    PubMed  CAS  Google Scholar 

  • Ortego F, Pons X, Albajes R, Castañera P (2010) European commercial GM plantings and field trials. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB Int, Oxford, pp 327–344

    Google Scholar 

  • Ostlie KR, Hutchison WD, Hellmich RL (1997) Bt Corn and European Corn Borer (NCR Publ 602). Univ of Minnesota, St. Paul, MN, USA

    Google Scholar 

  • Ostlie K (2001) Crafting crop resistance to corn rootworms. Nat Biotechnol 19:624–625

    PubMed  CAS  Google Scholar 

  • Outchkourov NS, Rogelj B, Strukelj B, Jongsma MA (2003) Expression of sea anemone equistatin in potato. Effects of plant proteases on heterologous protein production. Plant Physiol 133:379–390

    PubMed  CAS  Google Scholar 

  • Palm CJ, Schaller DL, Donegan KK, Seidler RJ (1996) Persistence in soil of transgenic plant produced Bacillus thuringiensis var. kurstaki δ-endotoxin. Can J Microbiol 42:1258–1262

    CAS  Google Scholar 

  • Pannetier C, Giband M, Couzi P, LeTan V, Mazier M, Tourneur J, Hau B (1997) Introduction of new traits into cotton through genetic engineering: insect resistance as example. Euphytica 96:163–166

    Google Scholar 

  • Peumans WJ, Vandamme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    PubMed  CAS  Google Scholar 

  • Phipps RH, Park JR (2002) Environmental benefits of genetically modified crops: global and European perspectives on their ability to reduce pesticide use. J Anim Feed Sci 11:1–8

    Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    PubMed  CAS  Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM (1997) Developing sustainable pest control from chemical ecology. Agr Ecosyst Environ 64:149–156

    CAS  Google Scholar 

  • Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1995) Antifeedant effects of plant-lectins and an enzyme on the adult stage of the rice brown planthopper, Nilaparvata lugens. Entomol Exp Appl 75:51–59

    CAS  Google Scholar 

  • Powell KS, Spence J, Bharathi M, Gatehouse JA, Gatehouse AMR (1998) Immuno histo chemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J Insect Physiol 44:529–539

    PubMed  CAS  Google Scholar 

  • Puterka GJ, Peters DC (1989) Inheritance of greenbug, Schizaphis graminum (Rondani), virulence to Gb2 and Gb3 resistance genes in wheat. Genome 32:109–114

    Google Scholar 

  • Puthoff DP, Sardesai N, Subramanyam S, Nemacheck JA et al (2005) Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feeding. Mol Plant Pathol 6:411–423

    PubMed  CAS  Google Scholar 

  • Rahman MM, Roberts HL, Sarjan M, Asgari S, Schmidt O (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc Natl Acad Sci USA 101:2696–2699

    PubMed  CAS  Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477

    PubMed  CAS  Google Scholar 

  • Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB (2005) Ion channels: molecular targets of neuroactive insecticides. Invert Neurosci 5:119–133

    PubMed  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    PubMed  CAS  Google Scholar 

  • Roberts PA (1995) Conceptual and practical aspects of variability in root-knot nematodes related to host-plant resistance. Annu Rev Phytopathol 33:199–221

    PubMed  CAS  Google Scholar 

  • Rojo E, Solano R, Sanchez-Serrano JJ (2003) Interactions between signaling compounds involved in plant defence. J Plant Growth Regul 22:82–98

    CAS  Google Scholar 

  • Romeis J, Bartsch D, BiglerF CMP, Gielkens MMC, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt JD (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208

    PubMed  CAS  Google Scholar 

  • Ross H (1986) Potato breeding – problems and perspectives: advances in plant breeding, J Plant Breed (Suppl 13). Paul Parey, Berlin/Hamburg, 132 p

    Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    PubMed  CAS  Google Scholar 

  • Sangadala S, Walters FS, English L, Adang MJA (1994) Mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal Cryia(C) toxin binding and (Rb + −K+)-Rb-86 efflux in vitro. J Biol Chem 269:10088–10092

    PubMed  CAS  Google Scholar 

  • Sanvido O, Romeis J, Bigler F (2007) Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation. Green Gene Technol: Res Area Soc Confl 107:235–278

    CAS  Google Scholar 

  • Sardesai N, Rajyashri KR, Behura SK, Nair S, Mohan M (2001) Genetic, physiological and molecular interactions of rice and its major Dipteran pest, gall midge. Plant Cell Tissue Organ 64:115–131

    CAS  Google Scholar 

  • Sauvion N, Rahbe Y, Peumans WJ, Van Damme EJM, Gatehouse JA, Gatehouse AMR (1996) Effects of GNA and other mannose binding lectins on development and fecundity of the peach-potato aphid Myzus persicae. Entomol Exp Appl 79:285–293

    CAS  Google Scholar 

  • Saxena D, Stotzky G (2001) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem 33:1225–1230

    CAS  Google Scholar 

  • Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bacillus thuringiensis corn. Nature 402:480

    PubMed  CAS  Google Scholar 

  • Sayyed A, Gatsi R, Kouskoura T, Wright DJ, Crickmore N (2001) Susceptibility of a field-derived, Bacillus thuringiensis-resistant strain of diamondback moth to in vitro-activated Cry1Ac toxin. Appl Environ Microbiol 67:4372–4373

    PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defence responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    PubMed  CAS  Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJV (1995) Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L). Plant Physiol 107:1233–1239

    PubMed  CAS  Google Scholar 

  • Schuler TH, Potting RPJ, Denholm I, Poppy GM (1999) Parasitoid behaviour and Bacillus thuringiensis plants. Nature 400:825–826

    PubMed  CAS  Google Scholar 

  • Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270:1988–1992

    PubMed  CAS  Google Scholar 

  • Seo S, Sano H, Ohashi Y (1999) Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11:289–298

    PubMed  CAS  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12:793–796

    CAS  Google Scholar 

  • Sharma HC, Ohm HW, Patterson FL, Benlhabib O et al (1997) Genetics of resistance to Hessian fly (Mayetiola destructor) [Diptera: Cecidomyiidae] biotype L in diploid wheats. Phytoprotection 78:61–65

    Google Scholar 

  • Shen BZ, Zheng ZW, Dooner HK (2000) A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin: Characterization of wild-type and mutant alleles. Proc Natl Acad Sci USA 97:14807–14812

    PubMed  CAS  Google Scholar 

  • Sims SR (1995) Bacillus thuringiensis var. kurstaki [Cry1A(c)] protein expressed in transgenic cotton: effects on beneficial and other non-target insects. Southwest Entomol 20:493–500

    Google Scholar 

  • Sims SR (1997) Host activity spectrum of the CryIIA Bacillus thuringiensis subsp. kurstaki protein: effects on Lepidoptera, Diptera, and non-target arthropods. Southwest Entomol 22:395–404

    Google Scholar 

  • Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122:1–16

    CAS  Google Scholar 

  • Smith CM, Schotzko D, Zemetra RS, Souza EJ, Schroeder-Teeter S (1991) Identification of Russian wheat aphid (Homoptera: Aphididae) resistance in wheat. J Econ Entomol 84:328–332

    Google Scholar 

  • Song WC, Funk CD, Brash AR (1993) Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci USA 90:8519–8523

    PubMed  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    PubMed  CAS  Google Scholar 

  • Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    CAS  Google Scholar 

  • Stone TB, Sims SR, Marrone PG (1989) Selection of tobacco budworm for resistance to a genetically engineered Pseudomonas fluorescens containing the δ-endotoxin of Bacillus thuringiensis subsp. Kurstaki. J Invertebr Pathol 53:228–234

    Google Scholar 

  • Stuart JJ, Schulte SJ, Hall PS, Mayer KM (1998) Genetic mapping of Hessian fly avirulence gene Vh6 using bulked segregant analysis. Genome 41:702–708

    PubMed  CAS  Google Scholar 

  • Subramanyam S, Sardesai N, Puthoff DP, Meyer JM et al (2006) Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci 170:90–103

    CAS  Google Scholar 

  • Suzuki K, Shinshi H (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell 7:639–647

    PubMed  CAS  Google Scholar 

  • Tabashnik BE, Carrière Y (2009) Insect resistance to genetically modified crops. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB Int, Oxford, pp 74–101

    Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carriére Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202

    PubMed  CAS  Google Scholar 

  • Tarpley L, Roessner U (2007) Metabolomics: enabling systems-level phenotyping in rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics – challenges, progress and prospects. Springer, New York, pp 91–107

    Google Scholar 

  • Teetes GL, Peterson GC, Nwanze KF, Pendleton BB (1999) Genetic diversity of sorghum a source of insect resistant germplasm. In: Clement SL, Quisenberry SS (eds) Global plant genetic resources for insect-resistant crops. CRC Press, Boca Raton, pp 63–82

    Google Scholar 

  • Tinjuangjun P, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2000) Enhanced insect resistance in Thai rice varieties generated by particle bombardment. Mol Breed 6(4):391–399

    Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    PubMed  CAS  Google Scholar 

  • Tortiglione C, Fogliano V, Ferracane R, Fanti P, Pennacchio F, Monti LM, Rao R (2003) An insect peptide engineered into the tomato prosystemin gene is released in transgenic tobacco plants and exerts biological activity. Plant Mol Biol 53:891–902

    PubMed  CAS  Google Scholar 

  • Upadhyaya NM, Pereira A, Watson JM (2010) Transgenic crops and functional genomics. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants: vol 2. Utilization and biosafety. Spinger, New York

    Google Scholar 

  • Urwin PE, Atkinson HJ, Waller DA, McPherson MJ (1995) Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J 8:121–131

    PubMed  CAS  Google Scholar 

  • Vadlamudi RK, Weber E, Ji IH, Ji TH, Bulla LA (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270:5490–5494

    PubMed  CAS  Google Scholar 

  • Vaeck M, Reynaerts A, Hofte H, Jansens S, Debeuckeleer M, Dean C, Zabeau M, Vanmontagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    CAS  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis related proteins. Eur J Plant Pathol 103:753–765

    Google Scholar 

  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci USA 98:8139–8144

    PubMed  CAS  Google Scholar 

  • Vandenberg JD (1990) Safety of four entomopathogens for cages adult honey bees (Hymenoptera: Apidae). J Econ Entomol 83:755–759

    Google Scholar 

  • Wäckers F, van Rijn P, Bruin J (2005) Plant-provided food for carnivorous insects – a protective mutualism and its applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Wei Z, Hu W, Lin QS, Cheng XY, Tong MJ, Zhu LL, Chen RZ, He GC (2009) Understanding rice plant resistance to the brown planthopper (Nilaparvata lugens): a proteomic approach. Proteomics 9:2798–2808

    PubMed  CAS  Google Scholar 

  • Williams WP, Davis FM (1997) Maize germplasm with resistance to south-western corn borer and fall armyworm. In: Mihm JA (ed) Insect resistant maize: recent advances and utilization. Proceedings of the international symposium, 27 Nov–3 Dec 1994. CIMMYT, Mexico, pp 226–229

    Google Scholar 

  • Wraight CL, Zangerl AR, Carroll MJ, Berenbaum MR (2000) Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc Natl Acad Sci USA 14:7700–7703

    Google Scholar 

  • Xu DP, Xue QZ, McElroy D, Mawal Y, Hilder VA, Wu R (1996) Constitutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers resistance to two major rice insect pests. Mol Breed 2:167–173

    CAS  Google Scholar 

  • Yuan H, Chen X, Zhu L, He G (2005) Identification of genes responsive to brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae) feeding in rice. Planta 221:105–112

    PubMed  CAS  Google Scholar 

  • Zantoko L, Shukle RH (1997) Genetics of virulence in the Hessian fly to resistance gene H13 in wheat. J Hered 88:120–123

    Google Scholar 

  • Zhang S, Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9:809–824

    PubMed  CAS  Google Scholar 

  • Zhang S, Klessig DF (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci USA 95:7433–7438

    PubMed  CAS  Google Scholar 

  • Zhang F, Zhu L, He G (2004) Differential gene expression in response to brown planthopper feeding in rice. J Plant Physiol 161:53–62

    PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angharad Gatehouse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gatehouse, A., Ferry, N. (2012). Successes and Failures in Plant-Insect Interactions: Is it Possible to Stay One Step Ahead of the Insects?. In: Smagghe, G., Diaz, I. (eds) Arthropod-Plant Interactions. Progress in Biological Control, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3873-7_4

Download citation

Publish with us

Policies and ethics