Skip to main content

Measuring and Modeling Morphology: How Dendrites Take Shape

  • Chapter
  • First Online:
Computational Systems Neurobiology

Abstract

Neuronal processes grow under a variety of constraints, both immediate and evolutionary. Their pattern of growth provides insight into their function. This chapter begins by reviewing morphological metrics used in analyses and computational models. Molecular mechanisms underlying growth and plasticity are then discussed, followed by several types of modeling approaches. Computer simulation of morphology can be used to describe and reproduce the statistics of neuronal types or to evaluate growth and functional hypotheses. For instance, models in which branching is probabilistically determined by diameter produce realistic virtual dendrites of most neuronal types, though more complicated statistical models are required for other types. Virtual dendrites grown under environmental and/or functional constraints are also discussed, offering a broad perspective on dendritic morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen Institute for Brain Science (2009) Allen Brain Atlas: home. Available at: http://www.brain-map.org/

  • Ascoli GA (2002) Neuroanatomical algorithms for dendritic modelling. Network 13:247–260

    PubMed  Google Scholar 

  • Ascoli GA (2006) Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat Rev Neurosci 7:318–324

    PubMed  CAS  Google Scholar 

  • Ascoli GA, Krichmar JL (2000) L-Neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 32–33:1003–1011

    Google Scholar 

  • Ascoli GA, Krichmar JL, Scorcioni R, Nasuto SJ, Senft SL, Krichmar GL (2001) Computer generation and quantitative morphometric analysis of virtual neurons. Anat Embryol 204: 283–301

    PubMed  CAS  Google Scholar 

  • Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251

    PubMed  CAS  Google Scholar 

  • Ascoli GA, Brown KM, Calixto E, Card JP, Galván E, Perez-Rosello T, Barrionuevo G (2009) Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes. J Comp Neurol 515:677–695

    PubMed  Google Scholar 

  • Berry M, Bradley P (1976) The application of network analysis to the study of branching patterns of large dendritic fields. Brain Res 109:111–132

    PubMed  CAS  Google Scholar 

  • Berry M, Flinn R (1984) Vertex analysis of Purkinje cell dendritic trees in the cerebellum of the rat. Proc R Soc Lond B Biol Sci 221:321–348

    PubMed  CAS  Google Scholar 

  • Bitplane: neuron reconstruction – automatic neuron tracing, spine detection and analysis in 3D/4D. Available at: http://www.bitplane.com/go/products/filamenttracer

  • Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J Comput Neurosci 3:313–336

    PubMed  CAS  Google Scholar 

  • Brown K, Donohue D, D’Alessandro G, Ascoli G (2005) A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks. Neuroinformatics 3: 343–359

    PubMed  Google Scholar 

  • Brown KM, Gillette TA, Ascoli GA (2008) Quantifying neuronal size: summing up trees and splitting the branch difference. Semin Cell Dev Biol 19:485–493

    PubMed  Google Scholar 

  • Brugg B, Matus A (1991) Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells. J Cell Biol 114:735–743

    PubMed  CAS  Google Scholar 

  • Burke R, Marks W, Ulfhake B (1992) A parsimonious description of motoneuron dendritic morphology using computer simulation. J Neurosci 12:2403–2416

    PubMed  CAS  Google Scholar 

  • Cannon RC, Wheal HV, Turner DA (1999) Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. J Comp Neurol 413:619–633

    PubMed  CAS  Google Scholar 

  • Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, Schwarzer S, Stanley HE (1995) Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods 56:133–144

    PubMed  CAS  Google Scholar 

  • Chen J, Kanai Y, Cowan NJ, Hirokawa N (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360:674–677

    PubMed  CAS  Google Scholar 

  • Chklovskii DB (2000) Optimal sizes of dendritic and axonal arbors in a topographic projection. J Neurophysiol 83:2113–2119

    PubMed  CAS  Google Scholar 

  • Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34:341–347

    PubMed  CAS  Google Scholar 

  • Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782–788

    PubMed  CAS  Google Scholar 

  • Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332

    PubMed  CAS  Google Scholar 

  • Cuntz H, Borst I, Segev I (2007) Optimization principles of dendritic structure. Theor Biol Med Model 4:21

    PubMed  Google Scholar 

  • Cuntz H, Forstner F, Haag J, Borst A (2008) The morphological identity of insect dendrites. PLoS Comput Biol 4:e1000251

    PubMed  Google Scholar 

  • Diadem competition. Available at: http://www.diademchallenge.org/

  • Díez-Guerra FJ, Avila J (1993) MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. Neuroreport 4:419–422

    PubMed  Google Scholar 

  • Donohue DE, Ascoli GA (2005a) Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons. J Comput Neurosci 19:223–238

    PubMed  Google Scholar 

  • Donohue DE, Ascoli GA (2005b) Models of neuronal outgrowth. In: Koslow SH, Subramaniam S (eds) Databasing the brain: from data to knowledge. Wiley, Hoboken, pp 304–323

    Google Scholar 

  • Donohue DE, Ascoli GA (2008) A comparative computer simulation of dendritic morphology. PLoS Comput Biol 4:e1000089

    PubMed  Google Scholar 

  • Donohue DE, Scorcioni R, Ascoli GA (2002) Generation and description of neuronal morphology using L-Neuron: a case study. In: Ascoli GA (ed) Computational neuroanatomy: principles and methods. Humana Press, Totowa, pp 49–70

    Google Scholar 

  • Gao F (2007) Molecular and cellular mechanisms of dendritic morphogenesis. Curr Opin Neurobiol 17:525–532

    PubMed  CAS  Google Scholar 

  • Gardner D, Akil H, Ascoli G, Bowden D, Bug W, Donohue D, Goldberg D, Grafstein B, Grethe J, Gupta A et al (2008) The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics 6:149–160

    PubMed  Google Scholar 

  • Georges P, Hadzimichalis N, Sweet E, Firestein B (2008) The yin–yang of dendrite morphology: unity of actin and microtubules. Mol Neurobiol 38:270–284

    PubMed  CAS  Google Scholar 

  • Glaser JR, Glaser EM (1990) Neuron imaging with Neurolucida–a PC-based system for image combining microscopy. Comput Med Imaging Graph 14:307–317

    PubMed  CAS  Google Scholar 

  • Goldstein SS, Rall W (1974) Changes of action potential shape and velocity for changing core conductor geometry. Biophys J 14:731–757

    PubMed  CAS  Google Scholar 

  • Graham BP, van Ooyen A (2004) Transport limited effects in a model of dendritic branching. J Theor Biol 230:421–432

    PubMed  Google Scholar 

  • Graham B, van Ooyen A (2006) Mathematical modelling and numerical simulation of the morphological development of neurons. BMC Neurosci 7(Suppl 1):S9

    PubMed  Google Scholar 

  • Grueber WB, Jan LY, Jan YN (2002) Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129:2867–2878

    PubMed  CAS  Google Scholar 

  • Harding EF (1971) The probabilities of rooted tree-shapes generated by random bifurcation. Adv Appl Probab 3:44–77

    Google Scholar 

  • Hattori D, Millard SS, Wojtowicz WM, Zipursky SL (2008) Dscam-mediated cell recognition regulates neural circuit formation. Cell Dev Biol 24:597–620

    CAS  Google Scholar 

  • Hely TA, Graham B, Ooyen AV (2001) A computational model of dendrite elongation and branching based on MAP2 phosphorylation. J Theor Biol 210:375–384

    PubMed  CAS  Google Scholar 

  • Heumann H, Wittum G (2009) The tree-edit-distance, a measure for quantifying neuronal morphology. Neuroinformatics 7:179–190

    PubMed  Google Scholar 

  • Hillman D (1979) Neuronal shape parameters and substructures as a basis of neuronal form. In: The neurosciences, 4th study program, MIT Press, Cambridge, pp 477–498

    Google Scholar 

  • Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17:7–11

    PubMed  Google Scholar 

  • Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    PubMed  CAS  Google Scholar 

  • Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  • Horton AC, Rácz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48: 757–771

    PubMed  CAS  Google Scholar 

  • Hughes ME, Bortnick R, Tsubouchi A, Bäumer P, Kondo M, Uemura T, Schmucker D (2007) Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 54: 417–427

    PubMed  CAS  Google Scholar 

  • Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362:17–45

    PubMed  CAS  Google Scholar 

  • Jelinek HF, Fernandez E (1998) Neurons and fractals: how reliable and useful are calculations of fractal dimensions? J Neurosci Methods 81:9–18

    PubMed  CAS  Google Scholar 

  • Kiddie G, McLean D, Van Ooyen A, Graham B (2005) Biologically plausible models of neurite outgrowth. Prog Brain Res 147:67–80

    PubMed  CAS  Google Scholar 

  • Kiddie G, McLean D, Van Ooyen A, Graham B (2005b) Biologically plausible models of neurite outgrowth. In: van Pelt J (ed) Development, dynamics and pathiology of neuronal networks: from molecules to functional circuits, vol 147. Elsevier, Amsterdam, pp 67–80

    Google Scholar 

  • Komendantov AO, Ascoli GA (2009) Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. J Neurophysiol 101:1847–66

    PubMed  Google Scholar 

  • Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941: 11–28

    PubMed  CAS  Google Scholar 

  • Lewis TL, Mao T, Svoboda K, Arnold DB (2009) Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nat Neurosci 12:568–576

    PubMed  CAS  Google Scholar 

  • Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    PubMed  CAS  Google Scholar 

  • Lu J, Tapia J, White O, Lichtman J (2009) The interscutularis muscle connectome. PLoS Biol 7:265–277

    CAS  Google Scholar 

  • Luczak A (2006) Spatial embedding of neuronal trees modeled by diffusive growth. J Neurosci Methods 157:132–141

    PubMed  Google Scholar 

  • Luo L (2000) RHO GTPASES in neuronal morphogenesis. Nat Rev Neurosci 1:173–180

    PubMed  CAS  Google Scholar 

  • Macias MY, Battocletti JH, Sutton CH, Pintar FA, Maiman DJ (2000) Directed and enhanced neurite growth with pulsed magnetic field stimulation. Bioelectromagnetics 21:272–286

    PubMed  CAS  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    PubMed  CAS  Google Scholar 

  • Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283:1923–1927

    PubMed  CAS  Google Scholar 

  • Malun D, Brunjes PC (1996) Development of olfactory glomeruli: temporal and spatial interactions between olfactory receptor axons and mitral cells in opossums and rats. J Comp Neurol368:1–16

    PubMed  CAS  Google Scholar 

  • Marks WB, Burke RE (2007) Simulation of motoneuron morphology in three dimensions. I. Building individual dendritic trees. J Comp Neurol 503:685–700

    PubMed  Google Scholar 

  • MBF bioscience: neurolucida – neuron reconstruction. Available at: http://www.mbfbioscience.com/neurolucida

  • McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803

    PubMed  CAS  Google Scholar 

  • McAllister A, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18:767–778

    PubMed  CAS  Google Scholar 

  • Migliore M (1996) Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons. Biophys J 71:2394–2403

    PubMed  CAS  Google Scholar 

  • Miller FD, Kaplan DR (2003) Signaling mechanisms underlying dendrite formation. Curr Opin Neurobiol 13:391–398

    PubMed  CAS  Google Scholar 

  • Mirsky JS, Nadkarni PM, Healy MD, Miller PL, Shepherd GM (1998) Database tools for integrating and searching membrane property data correlated with neuronal morphology. J Neurosci Methods 82:105–121

    PubMed  CAS  Google Scholar 

  • Neuromantic: the freeware neuronal reconstruction tool. Available at: http://www.rdg.ac.uk/neuromantic

  • Nikolić M (2008) The Pak1 kinase: an important regulator of neuronal morphology and function in the developing forebrain. Mol Neurobiol 37:187–202

    PubMed  Google Scholar 

  • Parrish JZ, Emoto K, Kim MD, Jan YN (2007) Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci 30:399–423

    PubMed  CAS  Google Scholar 

  • Pedrotti B, Colombo R, Islam K (1994) Microtubule associated protein MAP1A is an actin-binding and crosslinking protein. Cell Motil Cytoskeleton 29:110–116

    PubMed  CAS  Google Scholar 

  • Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–573

    PubMed  CAS  Google Scholar 

  • Quinlan EM, Halpain S (1996) Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development. J Neurosci 16:7627–7637

    PubMed  CAS  Google Scholar 

  • Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6

    PubMed  CAS  Google Scholar 

  • Rajnicek A, Gow N, McCaig C (1992) Electric field-induced orientation of rat hippocampal neurones in vitro. Exp Physiol 77:229–232

    PubMed  CAS  Google Scholar 

  • Rall W (1969) Time constants and electrotonic length of membrane cylinders and neurons. Biophys J 9:1483–1508

    PubMed  CAS  Google Scholar 

  • Rapp M, Segev I, Yarom Y (1994) Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. J Physiol 474:101–118

    PubMed  CAS  Google Scholar 

  • Samsonovich AV, Ascoli GA (2003) Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. J Neurosci Res 71:173–187

    PubMed  CAS  Google Scholar 

  • Samsonovich AV, Ascoli GA (2006) Morphological homeostasis in cortical dendrites. Proc Natl Acad Sci USA 103:1569–1574

    PubMed  CAS  Google Scholar 

  • Scorcioni R, Lazarewicz MT, Ascoli GA (2004) Quantitative morphometry of hippocampal pyramidal cells: differences between anatomical classes and reconstructing laboratories. J Comp Neurol 473:177–193

    PubMed  Google Scholar 

  • Scorcioni R, Polavaram S, Ascoli GA (2008) L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3: 866–876

    PubMed  CAS  Google Scholar 

  • Shepherd GMG, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25:5670–5679

    PubMed  CAS  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–4061

    PubMed  CAS  Google Scholar 

  • Sieck GC, Prakash YS (1995) Fatigue at the neuromuscular junction. Branch point vs. presynaptic vs. postsynaptic mechanisms. Adv Exp Med Biol 384:83–100

    PubMed  CAS  Google Scholar 

  • Sin WC, Haas K, Ruthazer ES, Cline HT (2002) Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419:475–480

    PubMed  CAS  Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300

    PubMed  CAS  Google Scholar 

  • Stepanyants A, Chklovskii D (2005) Neurogeometry and potential synaptic connectivity. Trends Neurosci 28:387–394

    PubMed  CAS  Google Scholar 

  • Stiefel K, Sejnowski T (2007) Mapping function onto neuronal morphology. J Neurophysiol 98:513–526

    PubMed  Google Scholar 

  • Tamori Y (1993) Theory of dendritic morphology. Phys Rev E 48:3124

    Google Scholar 

  • Thompson C, Pathak S, Jeromin A, Ng L, Macpherson C, Mortrud M, Cusick A, Riley Z, Sunkin S, Bernard A (2008) Genomic anatomy of the hippocampus. Neuron 60:1010–1021

    PubMed  CAS  Google Scholar 

  • Van Ooyen A, Duijnhouwer J, Remme M, van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Netw Comput Neural Syst 13:311–325

    Google Scholar 

  • van Pelt J (1997) Effect of pruning on dendritic tree topology. J Theor Biol 186:17–32

    PubMed  Google Scholar 

  • Van Pelt J, Verwer R (1986) Topological properties of binary trees grown with order-dependent branching probabilities. Bull Math Biol 48:197–211

    PubMed  Google Scholar 

  • van Pelt J, Verwer RW, Uylings HB (1986) Application of growth models to the topology of neuronal branching patterns. J Neurosci Methods 18:153–165

    PubMed  Google Scholar 

  • Van Pelt J, Uylings H, Verwer R, Pentney R, Woldenberg M (1992) Tree asymmetry—a sensitive and practical measure for binary topological trees. Bull Math Biol 54:759–784

    PubMed  Google Scholar 

  • Verwer RW, van Pelt J (1983) A new method for the topological analysis of neuronal tree structures. J Neurosci Methods 8:335–351

    PubMed  CAS  Google Scholar 

  • Verwer R, Van Pelt J (1990) Analysis of binary trees when occasional multifurcations can be considered as aggregates of bifurcations. Bull Math Biol 52:629–641

    PubMed  CAS  Google Scholar 

  • Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937

    PubMed  CAS  Google Scholar 

  • Wen Q, Chklovskii DB (2008) A cost-benefit analysis of neuronal morphology. J Neurophysiol 99:2320–2328

    PubMed  Google Scholar 

  • Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307–1317

    PubMed  CAS  Google Scholar 

  • Wong ROL, Ghosh A (2002) Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 3:803–812

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Saitoh Y, Fukunaga K, Nishimura H, Miyamoto E (1988) Dephosphorylation of microtubule proteins by brain protein phosphatases 1 and 2A, and its effect on microtubule assembly. J Neurochem 50:1614–1623

    PubMed  CAS  Google Scholar 

  • Zador A, Agmon-Snir H, Segev I (1995) The morphoelectrotonic transform: a graphical approach to dendritic function. J Neurosci 15:1669–1682

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gillette, T.A., Ascoli, G.A. (2012). Measuring and Modeling Morphology: How Dendrites Take Shape. In: Le Novère, N. (eds) Computational Systems Neurobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3858-4_13

Download citation

Publish with us

Policies and ethics