Skip to main content

The Biology and Regenerative Potential of Stem Cells and Their Mesenchymal Progeny

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 6

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 6))

Abstract

Stem cells represent a promising novel therapeutic modality for the treatment of devastating diseases with high unmet medical need. Amongst the various types of stem cells, adult mesenchymal stromal cells (MSCs) emerged as cells with unique biological properties making them candidates for the treatment of autoimmune or inflammatory diseases or e.g. progressive organ failure. Here, the history of MSCs in the context of hematopoiesis and bone marrow transplantation, their in vivo origin in mesenchymal compartments, and their in vitro properties are highlighted. Proposed modes of action of MSCs and deduced potential targets of MSC therapy are discussed. Last but not least, an overview of the current status of cellular therapy approaches and future prospects is given regarding clinical testing of cells and future technological opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alison MR, Islam S, Lim SM (2009) Cell therapy for liver disease. Curr Opin Mol Ther 11:364–374

    PubMed  CAS  Google Scholar 

  • Bianco P, Riminucci M, Kuznetsov S, Robey PG (2010) Multipotential cells in the bone marrow stroma: regulation in the context of organ physiology. Crit Rev Eukaryot Gene Expr 9:159–173

    Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  • Chang W, Song BW, Lim S, Song H, Shim CY, Cha MJ, Ahn DH, Jung YG, Lee DH, Chung JH, Choi KD, Lee SK, Chung N, Lee SK, Jang Y, Hwang KC (2009) Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury. Stem Cells 27:2283–2292

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Liu Z, Tian N, Zhang J, Yei F, Duan B, Zhu Z, Lin S, Kwan TW (2006) Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 18:552–556

    PubMed  Google Scholar 

  • Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG, Kong D (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16:571–579

    Article  PubMed  CAS  Google Scholar 

  • Cossu G, Bianco P (2003) Mesoangioblasts – vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 13:537–542

    Article  PubMed  CAS  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  PubMed  CAS  Google Scholar 

  • Crosby LM, Waters CM (2010) Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 298:L715–L731

    Article  PubMed  CAS  Google Scholar 

  • D’Ippolito G, D’Ippolito G, Diabira S, Diabira S, Howard GA, Howard GA, Menei P, Menei P, Roos BA, Roos BA, Schiller PC, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  Google Scholar 

  • Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I (2006) The role of mesenchymal stem cells in haemopoiesis. Blood Rev 20:161–171

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Chen QW, Li XS, Liu H, Niu SQ, Zhou Y, Li GQ, Ke DZ, Mo XG (2011) Bone marrow mesenchymal stromal cells with support of bispecific antibody and ultrasound-mediated microbubbles prevent myocardial fibrosis via the signal transducer and activators of transcription signaling pathway. Cytotherapy 13:431–440

    Article  PubMed  CAS  Google Scholar 

  • Dennis JE, Cohen N, Goldberg VM, Caplan AI (2004) Targeted delivery of progenitor cells for cartilage repair. J Orthop Res 22:735–741

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ (2009) Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58:1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos F, Andrade PZ, Boura JS, Abecasis MM, da Silva CL, Cabral JM (2010) Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J Cell Physiol 223:27–35

    PubMed  Google Scholar 

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  PubMed  CAS  Google Scholar 

  • Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, Camussi G (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  PubMed  CAS  Google Scholar 

  • Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC (2010) Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson’s disease. J Neurosci Res 88:2669–2681

    PubMed  CAS  Google Scholar 

  • Gnecchi M, He H, Melo LG, Noiseaux N, Morello F, de Boer RA, Zhang L, Pratt RE, Dzau VJ, Ingwall JS (2009) Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells 27:971–979

    Article  PubMed  CAS  Google Scholar 

  • Hicok KC, Hedrick MH (2011) Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol Biol 702:87–105

    Article  PubMed  CAS  Google Scholar 

  • Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59:311–325

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Czerniak S, Dirocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci USA 108:9226–9231

    Article  PubMed  CAS  Google Scholar 

  • Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, Longaretti L, Rottoli D, Valsecchi F, Benigni A, Wang J, Abbate M, Zoja C, Remuzzi G (2007) Insulin-like growth factor-1 sustains stem cell-mediated renal repair. J Am Soc Nephrol 18:2921–2928

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  • Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  PubMed  CAS  Google Scholar 

  • Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Meida-Porada G, Muller HW, Zanjani E, Wernet P (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    Article  PubMed  Google Scholar 

  • Komarova S, Roth J, Alvarez R, Curiel DT, Pereboeva L (2010) Targeting of mesenchymal stem cells to ovarian tumors via an artificial receptor. J Ovarian Res 3:12

    Article  PubMed  Google Scholar 

  • Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  • Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    Article  PubMed  CAS  Google Scholar 

  • Lakshmipathy U, Hart RP (2008) Concise review: microRNA expression in multipotent mesenchymal stromal cells. Stem Cells 26:356–363

    Article  PubMed  CAS  Google Scholar 

  • Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  PubMed  Google Scholar 

  • Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63

    Article  PubMed  CAS  Google Scholar 

  • Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, Furlani D, Piechaczek C, Moebius JM, Lutzow K, Lendlein A, Stamm C, Li RK, Steinhoff G (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25:2118–2127

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Xue W, Ge G, Luo X, Li Y, Xiang H, Ding X, Tian P, Tian X (2010) Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun 401:509–515

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, Chen S (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92:26–36

    Article  PubMed  Google Scholar 

  • Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S, Boyd R, Trounson A (2009) Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175:303–313

    Article  PubMed  CAS  Google Scholar 

  • Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  • Nemeth K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  PubMed  CAS  Google Scholar 

  • Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A (2009) Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets 8:110–123

    Article  PubMed  CAS  Google Scholar 

  • Ortiz LA, DuTreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104:11002–11007

    Article  PubMed  CAS  Google Scholar 

  • Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76

    PubMed  CAS  Google Scholar 

  • Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, Dixit A, Rauthan A, Murgod U, Totey S (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11:897–911

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  PubMed  CAS  Google Scholar 

  • Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, Wohlgemuth R (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14:181–187

    Article  PubMed  CAS  Google Scholar 

  • Sarkar D, Zhao W, Gupta A, Loh WL, Karnik R, Karp JM (2011) Cell surface engineering of mesenchymal stem cells. Methods Mol Biol 698:505–523

    Article  PubMed  CAS  Google Scholar 

  • Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328:429–432

    Article  PubMed  CAS  Google Scholar 

  • Singer JW, Keating A, Cuttner J, Gown AM, Jacobson R, Killen PD, Moohr JW, Najfeld V, Powell J, Sanders J et al (1984) Evidence for a stem cell common to hematopoiesis and its in vitro microenvironment: studies of patients with clonal hematopoietic neoplasia. Leuk Res 8:535–545

    Article  PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  PubMed  CAS  Google Scholar 

  • Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G, de Kleijn DP (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6:206–214

    Article  PubMed  Google Scholar 

  • Togel FE, Westenfelder C (2010) Mesenchymal stem cells: a new therapeutic tool for AKI. Nat Rev Nephrol 6:179–183

    Article  PubMed  Google Scholar 

  • Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289:F31–F42

    Article  PubMed  Google Scholar 

  • Togel F, Zhang P, Hu Z, Westenfelder C (2009) VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury. J Cell Mol Med 13:2109–2114

    Article  PubMed  Google Scholar 

  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  PubMed  CAS  Google Scholar 

  • Wagner J, Kean T, Young R, Dennis JE, Caplan AI (2009) Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol 20:531–536

    Article  PubMed  CAS  Google Scholar 

  • Westergren-Thorsson G, Larsen K, Nihlberg K, Andersson-Sjoland A, Hallgren O, Marko-Varga G, Bjermer L (2010) Pathological airway remodelling in inflammation. Clin Respir J 4(Suppl 1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Neubauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Neubauer, M., Wegmeyer, H., Huss, R. (2012). The Biology and Regenerative Potential of Stem Cells and Their Mesenchymal Progeny. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 6. Stem Cells and Cancer Stem Cells, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2993-3_13

Download citation

Publish with us

Policies and ethics