Skip to main content

Recurrent Dreams of Life in Meteorites

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

The debate on life in meteorites has entered its eighth episode, with recurrent themes and arguments. We suggest: (1) that deliberate contamination of meteorite specimens be used as a control; (2) that exploration of the solar system proceed apace to obtain pristine samples and check them for life, under stringent isolating conditions that provably avoid contamination of control specimens; and (3) that the combination of macromolecular with inorganic material in carbonaceous chondrites be explored as a possible cause for some of the organized elements and as a possible early step towards protocells in the origin of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abyzov SS, Imshenetskii AA (1965) A technique and some results of meteorite microbiological investigations. Life Sci Space Res 3:155–164

    PubMed  CAS  Google Scholar 

  • Alexander CMO, Russell SS, Arden JW, Ash RD, Grady MM, Pillinger CT (1998) The origin of chondritic macromolecular organic matter: a carbon and nitrogen isotope study. Meteoritics Planet Sci 33(4):603–622

    CAS  Google Scholar 

  • Alpern B, Benkheiri Y (1973) Distribution de la matière organique dans la météorite d’Orgueil par microscopie en fluorescence [Distribution of organic matter in the Orgueil meteorite by fluorescent microscopy]. Earth Planet Sci Lett 19(4):422–428

    CAS  Google Scholar 

  • Ameen AP, Short RD, Douglas CWI, Johns R, Ballet B (1996) A critical investigation of some of the procedures employed in the surgical use of titanium. J Mater Sci Mater Med 7(4):195–199

    CAS  Google Scholar 

  • Anders E (1962) Meteoritic hydrocarbons and extraterrestrial life. Ann N Y Acad Sci 93(14):651–657

    PubMed  CAS  Google Scholar 

  • Anders E (1963) On the origin of carbonaceous chondrites. Ann N Y Acad Sci 108(2):514–533

    PubMed  CAS  Google Scholar 

  • Anders E (1991) Organic matter in meteorites and comets: possible origins. Space Sci Rev 56(1–2):157–166

    Google Scholar 

  • Anders E, Fitch FW (1962) Search for organized elements in carbonaceous chondrites. Science 138(3548):1392–1399

    PubMed  CAS  Google Scholar 

  • Anders E, Fitch FW (1963) Erratum: Search for organized elements in carbonaceous chondrites. Science 139(3550):99

    Google Scholar 

  • Anders E, DuFresne ER, Hayatsu R, DuFresne A, Cavaillé A, Fitch FW (1964) Contaminated meteorite. Science 146(3648):1157–1161

    PubMed  CAS  Google Scholar 

  • Anonymous (1882) Fossils in meteors. The Midland Naturalist 5:92

    Google Scholar 

  • Anonymous (1962) Life-forms in meteorites. Curr Sci 31(6):226

    Google Scholar 

  • Anonymous (1965) Life-forms in meteorites and the problem of terrestrial contamination: a study in methodology – Tasch, P. Psychiatr Q 39(2):382

    Google Scholar 

  • Anonymous (2011) NASA shoots down alien fossil claims. http://www.abc.net.au/news/stories/2011/03/08/3157645.htm. Accessed 26 June 2011

  • Arrhenius SA (1908) Worlds in the making; the evolution of the universe. Harper, New York

    Google Scholar 

  • Arrhenius S (1909) The life of the universe as conceived by man from the earliest ages to the present time, vol 1, 2. Harper & Brothers, New York

    Google Scholar 

  • Badylak SF, Wu CC, Bible M, McPherson E (2003) Host protection against deliberate bacterial contamination of an extracellular matrix bioscaffold versus DacronTM mesh in a dog model of orthopedic soft tissue repair. J Biomed Mater Res Part B 67B(1):648–654

    CAS  Google Scholar 

  • Bairyev C, Mamedov S (1962) CEДБI ЖИЗHИ BКAMHЯX ИЗB CEЛEHHO [Traces of life in rocks from outer space]. Pravda (June 25):6

    Google Scholar 

  • Baker BL (1971) Review of organic matter in the Orgueil meteorite. Space Life Sciences 2(4):472–497

    CAS  Google Scholar 

  • Bandurski EL, Nagy B (1976) The polymer-like organic material in the Orgueil meteorite. Geochim Cosmochim Acta 40(11):1397–1406

    CAS  Google Scholar 

  • Barghoorn ES, Phillpott D, Turnbill C (1970) Micropaleontological study of lunar. Science 167(3918):775

    PubMed  CAS  Google Scholar 

  • Bauman AJ, Devaney JR, Bollin EM (1973) Allende meteorite carbonaceous phase: intractable nature and scanning electron morphology. Nature 241(5387):264–267

    Google Scholar 

  • Becquerel P (1924) La Vie Terrestre Provient-Elle d’un Autre Monde? [Does life on earth come from another world?]. L’Astronomie 38:393–417

    Google Scholar 

  • Benzerara K, Chapon V, Moreira D, López-García P, Guyot F, Heulin T (2006) Microbial diversity on the Tatahouine meteorite. Meteoritics Planet Sci 41(8):1249–1265

    CAS  Google Scholar 

  • Bernal JD (1961) Significance of carbonaceous meteorites in theories on the origin of life. Nature 190(4771):129–131

    Google Scholar 

  • Bernal JD (1962) Comments. Nature 193(4821):1127–1129

    Google Scholar 

  • Bernal JD (1965) Essay review. In: Middlehurst BM, Kuiper GP (eds) The solar system, vol IV, The Moon, Meteorites and Comets. Sci Prog 53(209):143–146

    Google Scholar 

  • Berthelot P (1868) Cosmologie. – Sur la matiére charbonneuse des météorites. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 67:849

    Google Scholar 

  • Berthelot P (1869) Ueber die kohlige Substanz der Meteoriten. J Prakt Chem 106:254

    Google Scholar 

  • Binet L, Gourier D, Derenne S, Robert F, Ciofini I (2004) Occurence of abundant diradicaloid moieties in the insoluble organic matter from the Orgueil and Murchison meteorites: A fingerprint of its extraterrestrial origin? Geochim Cosmochim Acta 68(4):881–891

    CAS  Google Scholar 

  • Bitz SM, Nagy B (1966) Ozonolysis of “polymer-type” material in coal, kerogen and in the Orgueil meteorite: a preliminary report. Proc Natl Acad Sci USA 56(5):1383–1390

    PubMed  CAS  Google Scholar 

  • Bland PA, Howard KT, Cressey G, Benedix CK (2008) The terrestrial component of primitive chondrite alteration. Meteoritics Planet Sci 43(S7):A26

    Google Scholar 

  • Bland PA, Jackson MD, Coker RF, Cohen BA, Webber JBW, Lee MR, Duffy CM, Chater RJ, Ardakani MG, McPhail DS, McComb DW, Benedix GK (2009) Why aqueous alteration in asteroids was isochemical: High porosity not equal high permeability. Earth Planet Sci Lett 287(3–4):559–568

    CAS  Google Scholar 

  • Boato G (1954) The isotopic composition of hydrogen and carbon in the carbonaceous chondrites. Geochim Cosmochim Acta 6(5–6):209–220

    Google Scholar 

  • Botan EA (1965) Examination of “organized elements” from the Orgueil meteorite by quantitative fluorescence microscopy. Aerospace Med 36(11):1069–1076

    PubMed  CAS  Google Scholar 

  • Botan EA (1966) Biotic signatures. Ann N Y Acad Sci 140(A1):307–313

    CAS  Google Scholar 

  • Boyle A (2011) Life in meteorites? Study stirs debate. http://cosmiclog.msnbc.msn.com/_news/2011/03/05/6198177-life-in-meteorites-study-stirs-debate. Accessed 26 June 2011

  • Brandenburg JE (2011) Second Copernican revolution. The CI and ALH84001 are linked by isotopes and chemistry. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#123

  • Brasier MD (2011) Life in CI1 carbonaceous chondrites? J Cosmol 13(March): http://journalofcosmology.com/Life101.html#109

  • Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young EJ, Badylak SF (2006) Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng 12(10):2949–2955

    PubMed  CAS  Google Scholar 

  • Briggs MH (1960) The origins of life on the earth: a review of the experimental evidence. Sci Cult 26:160–170

    CAS  Google Scholar 

  • Briggs MH (1962a) The nature and origin of meteorite organic matter. Sci Cult 28(8):357–360

    Google Scholar 

  • Briggs MH (1962b) Properties of organic microstructures of some carbonaceous chondrites. Nature 195(4846):1076–1077

    CAS  Google Scholar 

  • Briggs MH (1963a) Biological problems of meteorites. Tuatara J Biol Soc 11(1):1–16

    Google Scholar 

  • Briggs MH (1963b) Organic extracts of some carbonaceous meteorites. Life Sci 1:63–68

    Google Scholar 

  • Briggs MH, Kitto GB (1962) Complex organic micro-structures in the Mokoia meteorite. Nature 193(4821):1126–1127

    Google Scholar 

  • Briggs MH, Mamikunian G (1963) Organic constituents of the carbonaceous chondrites. Space Sci Rev 1(4):647–682

    CAS  Google Scholar 

  • Briggs MH, Mamikunian G (1965) Trends and problems in exobiology. In: Mamikunian G, Briggs MH (eds) Current aspects of exobiology. Pergamon Press, New York, pp 347–358

    Google Scholar 

  • Brooks J (1981) Organic matter in meteorites and precambrian rocks: clues about the origin and development of living systems [and discussion]. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 303(1480):595–609

    CAS  Google Scholar 

  • Brooks J, Muir MD (1971) Morphology and chemistry of the organic insoluble matter from the Onverwacht Series Precambrian chert and the Orgueil and Murray carbonaceous meteorites. Grana 11(1):9–14

    Google Scholar 

  • Brooks J, Shaw G (1969) Evidence for extraterrestrial life: identity of sporopollenin with the insoluble organic matter present in the Orgueil and Murray meteorites and also in some terrestrial microfossils. Nature 223(5207):754–756

    CAS  Google Scholar 

  • Burke JG (1986) Cosmic debris: meteorites in history. University of California Press, Berkeley

    Google Scholar 

  • Burke V, Wiley AJ (1937) Bacteria in coal. J Bacteriol 34(5):483–488

    Google Scholar 

  • Buseck PR, Hua X (1993) Matrices of carbonaceous chondrite meteorites. Annual Rev Earth Planet Sci 21:255–305

    CAS  Google Scholar 

  • Campbell SE (1979) Soil stabilization by a prokaryotic desert crust: implications for precambrian land biota. Orig Life Evol Biosph 9(4):335–348

    CAS  Google Scholar 

  • Campbell MR, Schulze-Makuch D (2010) Classics in space medicine: BOTAN EA. Examination of “organized elements” from the Orgueil meteorite by quantitative fluorescence microscopy. Aerosp Med 1965; 36:1069–76. Aviation Space Environ Med 81(7):700–701

    Google Scholar 

  • Choi JS, Chung YH, Moon YJ, Kim C, Watanabe M, Song PS, Joe CO, Bogorad L, Park YM (1999) Photomovement of the gliding cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol 70(1):95–102

    Google Scholar 

  • Chyba CF, McDonald GD (1995) The origin of life in the solar system: current issues. Annual Rev Earth Planet Sci 23:215–249

    CAS  Google Scholar 

  • Claus P (1968) Studies on terrestrial contaminants of meteorites. Ann N Y Acad Sci 147(9):365–409

    PubMed  CAS  Google Scholar 

  • Claus G, Madri PP (1972) Studies of terrestrial contaminants in meteorites: Part II Bacteriology of meteorites. Ann N Y Acad Sci 196(9):387–407

    Google Scholar 

  • Claus G, Nagy B (1961) A microbiological examination of some carbonaceous chondrites. Nature 192(480):594–596

    Google Scholar 

  • Claus G, Nagy B (1962a) Microfossils, new to science, resembling algae and flagellates, found in meteorites. Pollen et Spores 4(2):339

    Google Scholar 

  • Claus G, Nagy B (1962b) Taxonomical consideration of certain Incerta Sedes. Phycol Soc Am News Bull 15(1):15–19

    Google Scholar 

  • Claus G, Nagy B (1963) Discussion de la note de Georges Deflandre sur la présence supposée de micro-organismes d’origine extra-terrestre dans des météorites [Discussion of the note of Georges Deflandre. “Criticisms on the supposed presence of microorganisms extraterrestrial in origin in meteorites]. Rev Agol 6(4):319–323

    Google Scholar 

  • Claus G, Suba-C EA (1964) Organized element distribution in relation to size in the Orgueil meteorite. Nature 204(495):118–120

    Google Scholar 

  • Claus G, Suba-C EA (1965) Interpretation of micro-structures in carbonaceous meteorites. Nature 205(4977):1201

    CAS  Google Scholar 

  • Claus G, Nagy B, Europa DL (1963) Further observations on the properties of the “organized elements” in carbonaceous chondrites. Ann N Y Acad Sci 108(2):580–605

    PubMed  CAS  Google Scholar 

  • Cloez S (1864a) Analyse chimique de la pierre météorique d’Orgueil. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 59:37–40

    Google Scholar 

  • Cloez S (1864b) Note sur la composition chimique de la pierre météorique d’Orgueil. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:986–988

    Google Scholar 

  • Cloud P (1973) Pseudofossils: a plea for caution. Geology (Boulder) 1(3):123–127

    Google Scholar 

  • Cody GD, Alexander CMO, Kilcoyne ALD, Yabuta H (2008) Unraveling the chemical history of the Solar System as recorded in extraterrestrial organic matter. In: Kwok S, Sandford S (eds) Organic matter in space, proceedings IAU symposium No. 251, vol 4. International Astronomical Union, pp 277–284

    Google Scholar 

  • Cohen EW (1894) Meteoritenkunde. Heft I. Untersuchungen und Charakteristik der Gemengtheile. E. Schweizerbart‘sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Cohen EW (1903) Meteoritenkunde. Heft II. Structurformen; Versuche künstlicher Nachbildung von Meteoriten; Rinde und schwarze Adern; Relief der Oberfäche; Gestalt, Zahl und Grösse der Meteorite; Nachträge zu Heft I, vol 2. E. Schweizerbart‘sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Consolmagno GJ, Britt DT, Macke RJ (2008) The significance of meteorite density and porosity. Chem Erde-Geochem 68(1):1–29

    CAS  Google Scholar 

  • Cowen R (2011) Meteorites may hold fossils from space – or not. ScienceNews:http://www.sciencenews.org/view/generic/id/70826/title/Meteorites_may_hold_fossils_from_space_--_or_not

  • Crane D (1972) Invisible colleges, vol 1. The University of Chicago Press, Chicago

    Google Scholar 

  • Crowe MJ (1999) The extraterrestrial life debate, 1750–1900. Dover, Mineola

    Google Scholar 

  • Damer B, Newman P, Gordon R, Barbalet T, Norkus R, Karpis M (2012) Cyberbiogenesis: a thought experiment and 21st century grand challenge. In: Seckbach J (ed) In the beginning: Precursors of life, chemical models and early biological evolution. Springer, Dordrecht, pp

    Google Scholar 

  • Daubrée GA (1864a) Cosmologie. – Note sur les météorites tombées le 14 mai aux environs d‘Orgueil (Tarn-et-Garonne). Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:984–986

    Google Scholar 

  • Daubrée GA (1864b) Noveaux renseignements sur le bolide du mai 1864. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:1065–1072

    Google Scholar 

  • Day W (1984) Genesis on Planet Earth: the Search for Life’s Beginning. Yale University Press, New Haven

    Google Scholar 

  • de Mello DC (2011) Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 40(3):1512–1546

    Google Scholar 

  • Deamer DW (1997) The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev 61(2):239–261

    PubMed  CAS  Google Scholar 

  • Deamer DW, Pashley RM (1989a) Amphiphilic components of carbonaceous meteorites. Origins Life Evol Biosph 19:21–38

    CAS  Google Scholar 

  • Deamer DW, Pashley RM (1989b) Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig Life Evol Biosph 19(1):21–38

    PubMed  CAS  Google Scholar 

  • Deflandre G (1962) Micropaléontologie des météorites. – Remarques critiques sur la présence supposée de microorganismes d‘origine extra-terrestre dans des météorites [Micropaleontology of meteorites. – Critical remarks on the supposed presence of microorganisms of extraterrestrial origin of meteorites]. Comptes rendus hebdomadaires des séances de l’Académie des sciences 254(19 Part 3):3405–3407

    Google Scholar 

  • Degens ET (1964) Genetic relationships between organic matter in meteorites and sediments. Nature 202(4937):1092–1095

    PubMed  CAS  Google Scholar 

  • Dodd RT (1983) Meteorites. A petrologic-chemical synthesis. Cambridge University Press, London

    Google Scholar 

  • Dombrowski H (1963a) Bacteria from Paleozoic salt deposits. Ann N Y Acad Sci 108(2):453–460

    Google Scholar 

  • Dombrowski HJ (1963b) Living bacteria from the Paleozoic. Biol Zentrabl 82(4):477–484

    Google Scholar 

  • Drum RW (1968) Petrifaction of plant tissue in the laboratory. Nature 218:784–785

    Google Scholar 

  • DuFresne ER, Anders E (1961) The record in the meteorites-V. A thermometer mineral in the Mighei carbonaceous chondrite. Geochim Cosmochim Acta 23(3–4):200–208

    CAS  Google Scholar 

  • Engel MH (2011) The search for extraterrestrial life. J Cosmol 13(March):http://journalofcosmology.com/Life101.html#102

  • Erhenberg GC (1839) On a meteoric paper which fell from the sky in the year 1682 at Courland, composed of Confervae and Infusoria. Ann Mag Nat Hist 3:185–186

    Google Scholar 

  • Farrell MA (1933) Living bacteria in ancient rocks and meteorites. Amer Mus Novit 645:1–3

    Google Scholar 

  • Fisk MR, Popa R, Mason OU, Storrie-Lombardi MC, Vicenzi EP (2006) Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6(1):48–68

    PubMed  CAS  Google Scholar 

  • Fitch FW, Anders E (1963a) Observations on the nature of the “organized elements” in carbonaceous chondrites. Ann N Y Acad Sci 108(2):495–513

    PubMed  CAS  Google Scholar 

  • Fitch FW, Anders E (1963b) Organized element: possible indentification in Orgueil meteorite. Science 140(357):1097–1100

    PubMed  CAS  Google Scholar 

  • Fitch FW, Anders E (1965) Current status of the analysis of organized elements in carbonaceous chondrites. Life Sci Space Res 3:154

    Google Scholar 

  • Fitch F, Anders E, Schwarcz HP (1962a) ‘Organized elements’ in carbonaceous chondrites. Nature 193(4821):1123–1125

    Google Scholar 

  • Fitch F, Schwartz HP, Anders E (1962b) Identification of some organized elements in carbonaceous chondrites. J Geophys Res 67(9):3557–3558

    Google Scholar 

  • Flory DA, Oró J, Fennessey PV (1974) Organic contamination problems in the Viking molecular analysis experiment. Orig Life Evol Biosph 5(3–4):443–455

    CAS  Google Scholar 

  • Folk RL, Lynch FL (1998) Carbonaceous objects resembling nannobacteria in Allende meteorite. Proc SPIE 3441:115–136

    Google Scholar 

  • Folk RL, Taylor LA (2002) Nannobacterial alteration of pyroxenes in Martian meteorite Allan Hills 84001. Meteoritics Planet Sci 37(8):1057–1069

    CAS  Google Scholar 

  • Folsome CE (1976) Synthetic organic microstructures and the origins of cellular life. Naturwissenschaften 63(7):303–306

    CAS  Google Scholar 

  • Folsome CE (1977) Reply: Organic microstructures and terrestrial protocells. Naturwissenschaften 64(7):381

    CAS  Google Scholar 

  • Folsome CE, Allen RD, Ichinose NK (1975) Organic microstructures as products of Miller-Urey electrical discharges. Precambrian Res 2(3):263–275

    Google Scholar 

  • Fox SW (1964) Thermal polymerization of amino-acids and production of formed microparticles on lava. Nature 201(4917):336–337

    PubMed  CAS  Google Scholar 

  • Fox SW (1977) Organic microstructures and terrestrial protocells. Naturwissenschaften 64(7):380

    PubMed  CAS  Google Scholar 

  • Fox A (2002) Chemical markers for bacteria in extraterrestrial samples. Anat Rec 268(3):180–185

    PubMed  CAS  Google Scholar 

  • Fox SW, Yuyama S (1963) Abiotic production of primitive protein and formed microparticles. Ann N Y Acad Sci 108(2):487–494

    PubMed  CAS  Google Scholar 

  • Francis S, Barghoorn ES, Margulis L (1978a) On the experimental silicification of microorganisms. III. Implications of the preservation of the green prokaryotic alga Prochloron and other coccoids for interpretation of the microbial fossil record. Precambrian Res 7(4):377–383

    Google Scholar 

  • Francis S, Margulis L, Barghoorn ES (1978b) On the experimental silicification of microorganisms. II. On the time of appearance of eucaryotic organisms in the fossil record. Precambrian Res 6(1):65–100

    Google Scholar 

  • Franks F (1981) Polywater. MIT Press, Cambridge

    Google Scholar 

  • Galippe V, Souffland G (1924) Recherches sur la présence dans les Météorites, les Pierres dures, les Minerais, le Quartz, le Granite, le Basalte, les Cendres et les laves volcaniques, d’organites susceptibles de reciviscence et sur leur resistance aux hautes températures [Research on presence of recovering micoorganisms in meteorites, hard stones, minerals, quartz, granite, basalt, ash and volcanic lava, and their resistance to high temperatures]. CR Acad Sci, Paris 172:1252–1254

    Google Scholar 

  • Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4(11)

    Google Scholar 

  • Gaskell T (1962) Do meteorites reveal life in other worlds? New Scientist 14(2893):458–459

    Google Scholar 

  • Gentner W (1963) Irdische und Meteoritische Materie [Terrestrial and meteoritic matter]. Naturwissenschaften 50(6):191–199

    Google Scholar 

  • Gibson EK, McKay DS, Clemett SJ, Thomas-Keprta KL, Pillinger CT, Verchovsky AB, Spencer L (2010) Nature of carbon in martian meteorites. Meteoritics Planet Sci 45(Supplement s1):A63

    Google Scholar 

  • Godon P (2011) Can a meteorite falling on earth originate from earth?. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#108

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51(2):475–478

    Google Scholar 

  • Gordon R (2008) Hoyle’s tornado origin of artificial life, a computer programming challenge. In: Seckbach J, Gordon R (eds) Divine action and natural selection: science, faith and evolution. World Scientific, Singapore, pp 354–367

    Google Scholar 

  • Gordon R, Hoover RB (2007) Could there have been a single origin of life in a big bang universe? Proc SPIE 6694. doi:10.1117/1112.737041

  • Gordon R, Hoover RB, Tuszynski JA, de Luis J, Camp PJ, Tiffany MA, Nagy SS, Fayek M, Lopez PJ, Lerner BE (2007) Diatoms in space: testing prospects for reliable diatom nanotechnology in microgravity. Proc SPIE 6694:V1–V15. doi:10.1117/1112.737051

    Google Scholar 

  • Gorlenko VM, Zhmur SI, Duda VI, Osipov GA, Suzina NE, Dmitriev VV (1999) Microbial nature of fibrous kerite of Yolyn. Proc SPIE 3755:83–95

    CAS  Google Scholar 

  • Gounelle M, Zolensky ME (2001) A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics Planet Sci 36(10):1321–1329

    CAS  Google Scholar 

  • Green HW, Radcliffe SV, Heuer AH (1971) Allende meteorite: a high-voltage electron petrographic study. Science 172(3986):936–939

    PubMed  CAS  Google Scholar 

  • Gregory PH (1962) Identity of organized elements from meteorites. Nature 194(4833):1065

    Google Scholar 

  • Gregory PH (1975) Recognition of microscopic objects. Proc R Soc Lond Ser B 189(1095):161–165

    Google Scholar 

  • Gronstal A, Pearson V, Kappler A, Dooris C, Anand M, Poitrasson F, Kee TP, Cockell CS (2009) Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria. Meteoritics Planet Sci 44(2):233–247

    CAS  Google Scholar 

  • Grossman JN, Alexander CMO, Wang JH, Brearley AJ (2000) Bleached chondrules: evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteoritics Planet Sci 35(3):467–486

    CAS  Google Scholar 

  • Gümbel H (1878) Uber die in Bayern gefundenen Steinmeteoriten [On the stone meteorites found in Bavaria]. Sitzungsber math-phys KI Kgl bayer Akad Wiss München 1:14–72

    Google Scholar 

  • Gupta S, Agrawal SC (2006) Motility in Oscillatoria salina as affected by different factors. Folia Microbiol 51(6):565–571

    CAS  Google Scholar 

  • Hahn O (1880) Die Meteorite (Chondrite) unde ihre Organismen. Laupp’schen, Tubingen

    Google Scholar 

  • Han J, Simoneit BR, Burlingame AL, Calvin M (1969) Organic analysis on the Pueblito de Allende meteorite. Nature 222(5191):364–365

    CAS  Google Scholar 

  • Hare F (1970) Évolution de systèmes intervenant au cours de l’abiogenèse [Systems development during abiogenesis]. J Chim Phys Chim Biol 67(9):1681–1704

    CAS  Google Scholar 

  • Hayatsu R, Anders E (1981) Organic compounds in meteorites and their origins. Top Curr Chem 99:1–37

    CAS  Google Scholar 

  • Hayatsu R, Matsuoka S, Scott RG, Studier MH, Anders E (1977) Origin of organic matter in the early solar-system-VII. The organic polymer in carbonaceous chondrites. Geochim Cosmochim Acta 41(9):1325–1339

    CAS  Google Scholar 

  • Hayes JM (1967) Organic constituents of meteorites - a review. Geochim Cosmochim Acta 31(9):1395–1440

    CAS  Google Scholar 

  • Hayes JM, Biemann K (1968) High resolution mass spectrometric investigations of the organic constituents of the Murray and Holbrook chondrites. Geochim Cosmochim Acta 32(2):239–267

    CAS  Google Scholar 

  • Hoiczyk E, Baumeister W (1995) Envelope structure of four gliding filamentous cyanobacteria. J Bacteriol 177(9):2387–2395

    PubMed  CAS  Google Scholar 

  • Hoover RB (1997) Meteorites, microfossils, and exobiology. Proc SPIE 3111:115–136

    CAS  Google Scholar 

  • Hoover RB (2006a) Comets, asteroids, meteorites, and the origin of the biosphere. Proc SPIE 6309:J3090–J3090

    Google Scholar 

  • Hoover RB (2006b) Comets, carbonaceous meteorites, and the origin of the biosphere. Biogeosci Discuss 3:23–70

    Google Scholar 

  • Hoover RB (2006c) Fossils of prokaryotic microorganisms in the Orgueil meteorite. Proc SPIE 6309:30902

    Google Scholar 

  • Hoover RB (2007a) Microfossils of cyanobacteria in carbonaceous meteorites. Proc SPIE 6694:69408–69408

    Google Scholar 

  • Hoover RB (2007b) Ratios of biogenic elements for distinguishing recent from fossil microorganisms. Proc SPIE 6694:D6940

    Google Scholar 

  • Hoover RB (2008a) Comets, carbonaceous meteorites and the origin of the biosphere. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer, New York, pp 55–68

    Google Scholar 

  • Hoover RB (2008b) Microfossils of filamentous prokaryotes in CI1 and CM2 meteorites. Proc SPIE 7097:9703

    Google Scholar 

  • Hoover RB (2011) Fossils of cyanobacteria in CI1 carbonaceous meteorites: implications to life on comets, Europa, and Enceladus. J Cosmol 13(March):http://journalofcosmology.com/Life100.html

  • Hoover R, Klyce B (2010) Cosmic ancestry: more evidence for indigenous microfossils in carbonaceous meteorites. http://www.panspermia.org/hoover4.htm. Accessed 8 Nov 2010

  • Hoover RB, Rozanov AY (1999) Biomorphic structures in Mighei carbonaceous chondrite. Proc SPIE 3755:120–127

    Google Scholar 

  • Hoover RB, Rozanov AY (2001a) Chemical biomarkers and microfossils in carbonaceous meteorites. Proc SPIE 4495:1–18

    Google Scholar 

  • Hoover RB, Rozanov AY (2001b) Evidence for biomarkers and microfossils in ancient rocks and meteorites. Proc SPIE 4273:15–32

    Google Scholar 

  • Hoover RB, Rozanov AY (2002a) Astrobiology: traces of life in the cosmos. Proc SPIE 4765:1–19

    CAS  Google Scholar 

  • Hoover RB, Rozanov AY (2002b) Microfossils, biominerals, and chemical biomarkers in meteorites. Proc SPIE 4939:10–27

    Google Scholar 

  • Hoover RB, Rozanov AY (2011) Filamentous trichomic prokaryotes in carbonaceous meteorites: indigenous microfossils, minerals, or modern bio-contaminants? Proc SPIE 8152. doi: 10.1117/12.898659

    Google Scholar 

  • Hoover RB, Hoyle F, Wickramasinghe NC, Hoover MJ, Almufti S (1986) Diatoms on Earth, comets, Europa and in interstellar space. Earth Moon Planets 35(1):19–45

    CAS  Google Scholar 

  • Hoover RB, Rozanov AY, Zhmur SI, Gorlenko VM (1998) Further evidence of microfossils in carbonaceous chondrites. Proc SPIE 3441:203–216

    Google Scholar 

  • Hoover RB, Hoyle F, Wickramasinghe NC, Hoover MJ, Al-Mufti S (1999) Diatoms on Earth, comets, Europa and in interstellar space. Astrophys Space Sci 268(1–3):197–224

    Google Scholar 

  • Hoover RB, Jerman GA, Rozanov AY, Davies PCW (2003) Biomarkers and microfossils in the Murchison, Rainbow, and Tagish Lake meteorites. Proc SPIE 4859:15–31

    CAS  Google Scholar 

  • Hoover RB, Jerman G, Rozanov AY, Sipiera PP (2004a) Indigenous microfossils in carbonaceous meteorites. Proc SPIE 5555:1–17

    Google Scholar 

  • Hoover RB, Pikuta EV, Wickramasinghe NC, Wallis MK, Sheldon RB (2004b) Astrobiology of comets. Proc SPIE 5555:93–106

    Google Scholar 

  • Hoover RB, Rozanov AY, Jerman G, Costen J (2004c) Microfossils in Cl and CO carbonaceous meteorites. Proc SPIE 5163:7–22

    CAS  Google Scholar 

  • Hoover R, Wickramasinghe CN, Joseph R, Schild R (eds) (2011) The discovery of Alien extra-terrestrial life: the cosmic origins of life. Cosmology Science Publishers, Cambridge

    Google Scholar 

  • Horodyski RJ (1981) Pseudomicrofossils and altered microfossils from a middle proterozoic shale, Belt Supergroup, Montana. Precambrian Res 16(1–2):143–154

    CAS  Google Scholar 

  • Hovnanian HP (1966) Detection and epistemology of biotic signatures. Ann N Y Acad Sci 140(A1):294–306

    CAS  Google Scholar 

  • Hudson NP (1935) Preface: The question of living bacteria in stony meterorites. Geol Ser Field Museum Nat Hist 6(14):179–180

    Google Scholar 

  • Hull DL (1990) Science as a process: an evolutionary account of the social and conceptual development of science. University of Chicago Press, Chicago

    Google Scholar 

  • Imshenetsky AA (1964) Life and space. Life Sci Space Res 2:2–12

    Google Scholar 

  • Jacob R, Bentolila P, Leroux T, Deschamps P, Bergeron D, Bergeron L, Pelletier J, Douville P, Gaudet D, Levesque P, Pelletier R, Tremblay C, Allard L, Bouchard M, Gilbert G, Laniel P, Bertrand JP, Choquet Y, Girouard Y, Roberge F, Stgeorges G, Roy D, Nootens S, McGregor M (1994) The reuse of single-use cardiac catheters - safety, economical ethical and legal issues. Can J Cardiol 10(4):413–421

    Google Scholar 

  • Javaux EJ, Knoll AH, Walter M (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33(1):75–94

    PubMed  CAS  Google Scholar 

  • Kaufman M (2011) First contact: scientific breakthroughs in the hunt for life beyond Earth. Simon & Schuster, New York

    Google Scholar 

  • Kerridge JF (1999) Formation and processing of organics in the early solar system. Space Sci Rev 90(1–2):275–288

    PubMed  CAS  Google Scholar 

  • Kesselmeyer PA (1864) Der Meteorsteinfall zu Orgueil und Nohic bei Montauban in Südfrankreich, am 14. Mai 1864. Pogg Ann Phys Chem 122:654–658

    Google Scholar 

  • Kissin YV (2003) Hydrocarbon components in carbonaceous meteorites. Geochim Cosmochim Acta 67(9):1723–1735

    CAS  Google Scholar 

  • Kitajima F, Nakamura T, Takaoka N, Murae T (2002) Evaluating the thermal metamorphism of CM chondrites by using the pyrolytic behavior of carbonaceous macromolecular matter. Geochim Cosmochim Acta 66(1):163–172

    CAS  Google Scholar 

  • Knoll AH (1994) Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. Proc Natl Acad Sci USA 91(15):6743–6750

    PubMed  CAS  Google Scholar 

  • Kolodny Y, Kerridge JF, Kaplan IR (1980) Deuterium in carbonaceous chondrites. Earth Planet Sci Lett 46(2):149–158

    CAS  Google Scholar 

  • Kozar MP, Krahmer MT, Fox A, Larsson L, Allton J (2001) Lunar dust: A negative control for biomarker analyses of extraterrestrial samples? Geochim Cosmochim Acta 65(19):3307–3317

    CAS  Google Scholar 

  • Krejci-Graf K (1963) Angeblich biogene Stoffe in Meteoriten [Supposedly biogenic substances in meteorites]. Naturwissenschaften 50(16):539–541

    Google Scholar 

  • Kremp GO (1968) Observations on fossil-like objects in the Orgueil meteorite. J Br Interplanet Soc 21:99

    CAS  Google Scholar 

  • Krumbein WE (2009) Gunflint Chert microbiota revisited - neither stromatolites, nor cyanobacteria. In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Springer, Dordrecht, pp 53–70

    Google Scholar 

  • Kwok S (2009) Delivery of complex organic compounds from planetary nebulae to the solar system. Int J Astrobiol 8(3):161–167

    CAS  Google Scholar 

  • Laussedat A (1864) Sur la méthode employée pour déterminer la trajectoire du bolide du 14 mai. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:1100–1105

    Google Scholar 

  • Lemelle L, Salomé M, Fialin M, Simionovici A, Gillet P (2004) In situ identification and X-ray imaging of microorganisms distribution on the Tatahouine meteorite. Spectrochim Acta Part B Atomic Spectrosc 59(10–11):1703–1710

    Google Scholar 

  • Leymerie, Daubrée A (1864) Sur l‘aérolithe d‘Orgueil (Tarn-et-Garonne), tombé le 14 mai 1864, à 8 heures du soit. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:988–990

    Google Scholar 

  • Line MA (2007) Panspermia in the context of the timing of the origin of life and microbial phylogeny. Int J Astrobiol 6(3):249–254

    CAS  Google Scholar 

  • Line MA (2011) A critical analysis: fossils of cyanobacteria in CII carbonaceous meteorites. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#105

  • Lipman CB (1932) Are there living bacteria in stony meteorites? Amer Mus Novit 588:1–19

    Google Scholar 

  • Lipman CB (1936) Bacteria in meteorites. Pop Astron 44:442–446

    Google Scholar 

  • Llorca J (2004) Organic matter in meteorites. Int Microbiol 7(4):239–248

    PubMed  CAS  Google Scholar 

  • Luijt DS, Schirm J, Savelkoul PHM, Hoekstra A (2001) Risk of infection by reprocessed and resterilized virus-contaminated catheters: an in-vitro study. Eur Heart J 22(5):378–384

    PubMed  CAS  Google Scholar 

  • Mackay AL (2007) J. D. Bernal: his legacy to science and to society. J Phys Conf Ser 57:1–16

    Google Scholar 

  • Mamikunian G, Briggs MH (1963a) A catalog of microstructures observed in carbonaceous chondrites [Technical Report No. 32–398]. Jet Propulsion Laboratory Tech. Rep. Jet Propulsion Laboratory, California Institute of Technology, Pasadena

    Google Scholar 

  • Mamikunian G, Briggs MH (1963b) “Organized elements” in carbonaceous meteorites. Science 139(355):873

    Google Scholar 

  • Mamikunian G, Briggs MH (1963c) Some microstructures of complex morphology observed in preparations of carbonaceous chondrites made under sterile conditions. Nature 197(487):1245–1248

    Google Scholar 

  • Manten AA (1966) Microfossil-like objects in meteorites. Earth Sci Rev 1(4):337–341

    Google Scholar 

  • Marotta R, Leasi F, Uggetti A, Ricci C, Melone G (2010) Dry and survive: morphological changes during anhydrobiosis in a bdelloid rotifer. J Struct Biol 171(1):11–17

    PubMed  Google Scholar 

  • Mason J (1877) Life on meteoric stones. In: Mason J (ed) The year-book of facts in science and art for 1877. Ward, Lock & Co, London

    Google Scholar 

  • Mason B (1963) Organic matter from space. Sci Am 208(3):43–49

    CAS  Google Scholar 

  • Mautner MN (2002) Planetary resources and astroecology. Planetary microcosm models of asteroid meteorite interiors: electrolyte solutions and microbial growth- space populations and panspermia. Astrobiology 2(1):59–76

    PubMed  CAS  Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21(2):121–130

    CAS  Google Scholar 

  • McCall GJH (1973) Meteorites and their origins. Newton Abbot, David and Charles

    Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early earth and beyond. Astrobiology 7(1):10–26

    PubMed  CAS  Google Scholar 

  • McNichol J, Gordon R (2012) Are we from outer space? A critical review of the panspermia hypothesis. In: Seckbach J (ed) Genesis – in the beginning: on prebiotic life, chemical models and early biological evolution. Springer, Dordrecht, pp

    Google Scholar 

  • Meinschein WG (1963) Benzene extracts of the Orgueil meteorite. Nature 197(487):833–836

    Google Scholar 

  • Meinschein WG, Hennessy DJ, Nagy B (1963) Evidence in meteorites of former life: the organic compounds in carbonaceous chondrites are similar to those found in marine sediments. Ann N Y Acad Sci 108(2):553–579

    PubMed  CAS  Google Scholar 

  • Meinschein WG, Frondel C, Laur P, Mislow K (1966) Meteorites: optical activity in organic matter. Science 154(3747):377–380

    PubMed  CAS  Google Scholar 

  • Meinschein WG, Cordes E, Shiner VJ (1970) Search for alkanes of 15 to 30 carbon atom lenath. Science 167(3918):753–754

    PubMed  CAS  Google Scholar 

  • Merek EL (1973) Imaging and life detection. Bioscience 23(3):153–159

    Google Scholar 

  • Michels J (1881a) Editorial, December 24. Science 2(78):605

    Google Scholar 

  • Michels J (1881b) Editorial, May 14. Science 2(46):217

    Google Scholar 

  • Mimura K, Okamoto M, Sugitani K, Hashimoto S (2007) Selective release of D and 13  C from insoluble organic matter of the Murchison meteorite by impact shock. Meteoritics Planet Sci 42(3):347–355

    CAS  Google Scholar 

  • Morange M (2007) What history tells us X. Fifty years ago: the beginnings of exobiology. J Biosci 32(6 Supplement 2):1083–1087

    PubMed  Google Scholar 

  • Morrison P (1962) Carbonaceous “snowflakes” and the origin of life. Science 135(3504):663–664

    PubMed  CAS  Google Scholar 

  • Morrison D, Niehoff J (1979) Future exploration of the asteroids. In: Gehrels T, Matthews MS (eds) Asteroids. University of Arizona Press, Tucson, pp 227–250

    Google Scholar 

  • Mueller G (1953) The properties and theory of genesis of the carbonaceous complex within the cold Bokevelt meteorite. Geochim Cosmochim Acta 4(1–2):1–10

    CAS  Google Scholar 

  • Mueller G (1962) Interpretation of micro-structures in carbonaceous meteorites. Nature 196(4858):929–932

    CAS  Google Scholar 

  • Mueller G (1963) Interpretation of micro-structures in carbonaceous meteorites. In: Colombon U, Hobson GD (eds) Advances in organic geochemistry, proceedings of the first international meeting of the geochemical society, Organic Geochemical Group, Milan, Italy; 10–12 Sept 1962. Pergamon Press, New York, pp 119–140

    Google Scholar 

  • Mueller G (1964a) ‘Impact contamination‘of the Mokoia carbonaceous chondrite. Nature 204(4958):567

    CAS  Google Scholar 

  • Mueller G (1964b) Interpretation of micro-structures in carbonaceous meteorites. In: Colombo U, Hobson GD (eds) Advances in organic geochemistry: proceedings of the international meeting in Milan, 1962. Macmillan, pp 119–140

    Google Scholar 

  • Mueller G (1965) Interpretation of micro-structures in carbonaceous meteorites. Nature 205(4977):1200

    CAS  Google Scholar 

  • Mukhopadhyay PK, Mossman DJ, Ehrman JM (2007) The case for vestiges of Early Solar System biota in carbonaceous chondrites: petroleum geochemical snapshots and possible future petroleum prospects on Mars Expedition. Instruments, Methods, and Missions for Astrobiology X, vol 6694, pp 66940C

    Google Scholar 

  • Murae T (1999) Fluorescent organic matter in carbonaceous chondrites. Adv Space Res 24(4):469–476

    PubMed  CAS  Google Scholar 

  • Nagy B (1962) Organic particles embedded in minerals in the Orgueil and Ivuna carbonaceous chondrites. Nature 193:1129–1133

    Google Scholar 

  • Nagy B (1963) Life-like forms in meteorites and the problems of environmental control on the morphology of fossil and recent protobionta, a conference held by the New York Academy of Sciences, New York, April/May, 1962. Ann N Y Acad Sci 108(2):339–616

    Google Scholar 

  • Nagy B (1966a) Investigations of the Orgueil carbonaceous meteorite. Geol Fören Stockholm Förh 88(2):235–272

    CAS  Google Scholar 

  • Nagy B (1966b) A study of the optical rotation of lipids extracted from soils, sediments, and the Orgueil carbonaceous meteorite. Proc Natl Acad Sci USA 56(2):389–398

    PubMed  CAS  Google Scholar 

  • Nagy B (1967) The possibility of extraterrestrial life: ultra-microchemical analyses and electron-microscopic studies of microstructures in carbonaceous meteorites. Rev Palaeobot Palynol 3(1–4):237–242

    Google Scholar 

  • Nagy B (1968a) Carbonaceous meteorites. Endeavour 27(101):81–86

    CAS  Google Scholar 

  • Nagy B (1968b) Indications of possible biological substances in carbonaceous meteorites. J Astronaut Sci 15(4):161–168

    Google Scholar 

  • Nagy B (1975) Carbonaceous meteorites. Elsevier Scientific Pub. Co., Amsterdam

    Google Scholar 

  • Nagy B, Claus G (1964) Mineralized microstructures in carbonaceous meteorites. In: Colombo U, Hobson GD (eds) Advances in organic geochemistry. Pergamon Press, New York, pp 109–114

    Google Scholar 

  • Nagy B, Nagy LA (1969) Early Pre-cambrian Onverwacht microstructures: possibly oldest fossils on earth? Nature 223(5212):1226–1229

    CAS  Google Scholar 

  • Nagy B, Meinschein WG, Hennessy DJ (1961) Mass spectroscopic analysis of the Orgueil meteorite: evidence for biogenic hydrocarbons. Ann N Y Acad Sci 93(2):27–35

    Google Scholar 

  • Nagy B, Claus G, Fredriksson K, Percy J, Andersen CA, Urey HC (1963a) Electron probe microanalysis of organized elements in the Orgueil meteorite. Nature 198(487):121–125

    CAS  Google Scholar 

  • Nagy B, Fredriksson K, Kudynowski J, Carlson L (1963b) Ultra-violet spectra of organized elements. Nature 200(4906):565–566

    CAS  Google Scholar 

  • Nagy B, Hennessy DJ, Meinschein WG (1963c) Aqueous, low temperature environment of Orgueil meteorite parent body. Ann N Y Acad Sci 108(2):534–552

    PubMed  CAS  Google Scholar 

  • Nagy B, Murphy MTJ, Modzeleski V, Rouser G, Claus G, Hennessy DJ, Colombo U, Gazzarrini F (1964) Optical activity in saponified organic matter isolated from the interior of the Orgueil meteorite. Nature 202(4929):228–233

    CAS  Google Scholar 

  • Nagy B, Meinsche WG, Hennessy DJ (1965) Review of earlier work on carbonaceous material and organized elements in meteorites. Science 150(3694):380

    Google Scholar 

  • Nagy B, Drew CM, Hamilton PB, Modzeles VE, Murphy ME, Scott WM, Urey HC, Young M (1970) Organic compounds in lunar samples: pyrolysis products, hydrocarbons, amino acids. Science 167(3918):770–773

    PubMed  CAS  Google Scholar 

  • Nakamura-Messenger K, Messenger S, Keller LP, Clemett SJ, Zolensky ME (2006) Organic globules in the Tagish Lake meteorite: Remnants of the protosolar disk. Science 314(5804):1439–1442

    PubMed  CAS  Google Scholar 

  • Nininger HN (1938) Concerning bacteria in meteorites. Pop Astron 46:214–215

    Google Scholar 

  • Nooner DW, Oro J (1967) Organic compounds in meteorites-I. Aliphatic hydrocarbons. Geochim Cosmochim Acta 31(9):1359–1394

    CAS  Google Scholar 

  • Nultsch W (1962) Über Funde von Mikroorganismen in Meteoriten [On findings of microorganisms in meteorites]. Dtsch Med Wochenschr 87(39):1972–1973

    PubMed  CAS  Google Scholar 

  • Nultsch W (1968) Einfluss von Redox-Systemen auf die Bewegungsaktivitat und das phototaktische Reaktionsverhalten von Phormidium uncinatum [Effect of redox systems on the motility and the phototactic reactions of Phormidium uncinatum]. Arch Mikrobiol 63(4):295–320

    PubMed  CAS  Google Scholar 

  • O‘Connell E (1964a) Solar system science: 1963 literature survey, Part I. Icarus 3(2):172–180

    Google Scholar 

  • O‘Connell E (1964b) Solar system science: 1963 literature survey, Part II. Icarus 3(3):277–284

    Google Scholar 

  • O‘Connell E (1965) Solar system science: 1964 literature survey, Part I. Icarus 4(3):319–333

    Google Scholar 

  • Orcel J, Alpern B (1966) Étude de la microstructure de la météorite carbonée d’Orgueil [Study of the microstructure of the carbonaceous meteorite of Orgueil]. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences Serie D 262(13):1393–1397

    Google Scholar 

  • Oró J (1972) Extraterrestrial organic analysis. Space Life Sci 3(4):507–550

    PubMed  Google Scholar 

  • Oró J, Skewes HB (1965) Free amino-acids on human fingers: the question of contamination in microanalysis. Nature 207(5001):1042–1045

    PubMed  Google Scholar 

  • Oró J, Tornabene T (1965) Bacterial contamination of some carbonaceous meteorites. Science 150(3699):1046–1048

    Google Scholar 

  • Oyama VI (1972) Search for biogenic structures and viable organisms in lunar samples: a review. Space Life Sci 3(4):377–382

    PubMed  CAS  Google Scholar 

  • Oyama VI, Merek EL, Silverman MP (1970) A search for viable organisms in a lunar sample. Science 167(3918):773–775

    PubMed  CAS  Google Scholar 

  • Palik P (1962) Further life-forms in the Orgueil meteorite. Nature 194(4833):1065

    Google Scholar 

  • Palik P (1963) Extraterrestrial taxa and their nomenclature. Taxon 12(8):283

    Google Scholar 

  • Papp A (1963) Fossil protobionta and their occurrence. Ann N Y Acad Sci 108(2):461–463

    PubMed  CAS  Google Scholar 

  • Parkin DW, Brownlow AE, Hunter W (1962) Metallic cosmic dust with amorphous attachments. Nature 193(4816):639–642

    CAS  Google Scholar 

  • Pearson R (1962) Life-forms in carbonaceous chondrites. Nature 194(4833):1064–1065

    Google Scholar 

  • Pearson VK, Sephton MA, Gilmour I (2006) Molecular and isotopic indicators of alteration in CR chondrites. Meteoritics Planet Sci 41(9):1291–1303

    CAS  Google Scholar 

  • Pearson VK, Kearsley AT, Sephton MA, Gilmour I (2007) The labelling of meteoritic organic material using osmium tetroxide vapour impregnation. Planet Space Sci 55(10):1310–1318

    CAS  Google Scholar 

  • Peltzer ET, Bada JL, Schlesinger G, Miller SL (1984) The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. Adv Space Res 4(12):69–74

    PubMed  CAS  Google Scholar 

  • Pentecost A (1990) The tractive force generated by a motile filamentous cyanobacterium. Microbios Lett 44(175–176):111–118

    Google Scholar 

  • Persson D, Halberg KA, Jørgensen A, Ricci C, Møbjerg N, Kristensen RM (2011) Extreme stress tolerance in tardigrades: surviving space conditions in low earth orbit. J Zool System Evolut Res 49:90–97

    Google Scholar 

  • Pflug HD (1984a) Microvesicles in meteorites, a model of pre-biotic evolution. Naturwissenschaften 71(10):531–533

    PubMed  CAS  Google Scholar 

  • Pflug HD (1984b) Utrafine structure of the organic matter in meteorites. In: Wickramasinghe NC (ed) Fundamental studies and the future of science. University College Cardiff Press, Cardiff, pp 24–37

    Google Scholar 

  • Pflug HD (2001) Earliest organic evolution. Essay to the memory of Bartholomew Nagy. Precambrian Res 106(1–2):79–91

    CAS  Google Scholar 

  • Pflug HD, Heinz B (1997) Analysis of fossil-organic nanostructures terrestrial and extraterrestrial. Proc SPIE 3111:86–97

    CAS  Google Scholar 

  • Pikuta E (2011) The discovery of fossil evidence of extraterrestrial life in meteors. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#112

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33(3):183–209

    PubMed  CAS  Google Scholar 

  • Pisani M (1864) Étude chimique et analyse de l‘aérolithe d’Orgueil. Comptes rendus hebdomadaires des séances de l’Académie des sciences, Paris 59:132–135

    Google Scholar 

  • Preston LJ, Shuster J, Fernandez-Remolar D, Banerjee NR, Osinski GR, Southam G (2011) The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology 9(3):233–249

    PubMed  CAS  Google Scholar 

  • R (1881) Mr. Darwin on Dr. Hahn’s discovery of fossil organisms in meteorites. Science 2(61):410

    Google Scholar 

  • Rachel GW (1881) Fossil organisms in meteorites. Science 2(50):275–277

    PubMed  CAS  Google Scholar 

  • Rasic NF, Friesen RM, Anderson B, Hoban SA, Olson N, Kress J (2003) Prepared endotracheal tubes: are they a potential source for pathogenic microorganisms? Anesth Analgesia 97(4):1133–1136

    Google Scholar 

  • Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) (2008) Protocells: bridging nonliving and living matter. MIT Press, Cambridge

    Google Scholar 

  • Rauf K, Hann A, Wickramasinghe C (2010) Microstructure and elemental composition of the Tagish Lake meteorite and its astrobiological implications. Int J Astrobiol 9(1):35–43

    CAS  Google Scholar 

  • Raulin-Cerceau F, Maurel MC, Schneider J (1998) From Panspermia to bioastronomy, the evolution of the hypothesis of universal life. Orig Life Evol Biosph 28(4–6):597–612

    PubMed  CAS  Google Scholar 

  • Redfield R (2011) The evidence is not convincing: review of fossils of cyanobacteria in C11 carbonaceous meteorites. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#124

  • Ridgway HF, Lewin RA (1988) Characterization of gliding motility in Flexibacter polymorphus. Cell Motil Cytoskeleton 11(1):46–63

    PubMed  CAS  Google Scholar 

  • Rietmeijer FJM (1985) A poorly graphitized carbon contaminant in studies of extraterrestrial materials. Meteoritics 20(1):43–48

    CAS  Google Scholar 

  • Rossignol-Strick M, Barghoorn ES (1971) Extraterrestrial abiogenic organization of organic matter: the hollow spheres of the Orgueil meteorite. Space Life Sci 3(2):89–107

    PubMed  CAS  Google Scholar 

  • Rothschild L (2007) Stephen J. Dick; James E. Strick. The Living Universe: NASA and the Development of Astrobiology [book review]. Isis 98(2):423–424

    Google Scholar 

  • Roy SK (1935) The question of living bacteria in stony meterorites. Geol Ser Field Museum Nat Hist 6(14):180–198

    Google Scholar 

  • Roy SK (1937) Additional notes on the question of living bacteria in stony meteorites. Pop Astron 45:499–504

    Google Scholar 

  • Rozanov AY (2010) Pseudomorphic microbial structures. Paleontol J 44(7):819–826

    Google Scholar 

  • Rozanov AY, Hoover RB (2004) Atlas of bacteriomorphs in carbonaceous chondrites. Proc SPIE 5163:23–35

    CAS  Google Scholar 

  • Rozanov AY, Zhegallo EA, Ushatinskaya GT, Shuvalova YV, Hoover RB (2001) Bacterial paleontology for astrobiology. Proc SPIE 4495:283–294

    Google Scholar 

  • Sagan C (1962) Summary of a discussion with Erdtman on organized elements in carbonaceous chondrites. Science 137(3530):626

    Google Scholar 

  • Schild R (2011) Official statement. J Cosmol 13(March): http://journalofcosmology.com/Life100.html

  • Sephton MA (2002) Organic compounds in carbonaceous meteorites. Nat Prod Rep 19(3):292–311

    PubMed  CAS  Google Scholar 

  • Sephton MA (2004) Organic matter in ancient meteorites. Astron Geophys 45(2):8–14

    CAS  Google Scholar 

  • Sephton MA (2005) Organic matter in carbonaceous meteorites: past, present and future research. Philos Trans R Soc A Math Phys Eng Sci 363(1837):2729–2742

    CAS  Google Scholar 

  • Sephton MA, Pillinger CT, Gilmour I (1999) Small-scale hydrous pyrolysis of macromolecular material in meteorites. Planet Space Sci 47(1–2):181–187

    CAS  Google Scholar 

  • Sephton MA, Pillinger CT, Gilmour I (2001) Normal alkanes in meteorites: molecular δ13C values indicate an origin by terrestrial contamination. Precambrian Res 106(1–2):47–58

    CAS  Google Scholar 

  • Sheldon RB, Hoover RB (2008) Cosmological evolution: spatial relativity and the speed of life. Proc SPIE 7097:709716

    Google Scholar 

  • Silverman SR (1962) Excerpts from letter of 23 May 1962 to Urey from Silverman. Science 137(3530):626–627

    Google Scholar 

  • Simmonds PG, Rauman AJ, Bollin EM, Gelpi E, Oroó J (1969) Unextractable organic fraction of pueblito de allende metoeorite: evidence for its indigenous nature. Proc Natl Acad Sci USA 64(3):1027–1034

    PubMed  CAS  Google Scholar 

  • Simpson GG (1964) Nonprevalence of humanoids. We can learn more about life from terrestrial forms than we can from hypothetical extraterrestrial forms. Science 143(3608):769–775

    PubMed  CAS  Google Scholar 

  • Sipiera PP (2011) A compelling argument: the “fossils” are extra-terrestrial in origin. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#122

  • Sipiera PP, Hoover RB, Jerman GA (2000) Meteorites and microbes: meteorite collection and ice sampling at Patriot Hills, Thiel Mountains, and South Pole, Antarctica. Proc SPIE 4137:13–21

    CAS  Google Scholar 

  • Soffen GA (1969) Extraterrestrial optical microscopy. Appl Optics 8(7):1341–1347

    CAS  Google Scholar 

  • Staplin FL (1962a) Microfossils from the Orgueil meteorite. Micropaleontology 8(3):343–347

    Google Scholar 

  • Staplin FL (1962b) Organic remains in meteorites - a review of the problem. J Alberta Soc Petrol Geologist 10(10):575–580

    CAS  Google Scholar 

  • Staplin FL (1965a) Organic remains in meteorites. In: Mamikunian G, Briggs MH (eds) Current aspects of exobiology. Pergamon Press, New York, pp 77–92

    Google Scholar 

  • Staplin FL (1965b) Possible fossils from Orgueil and other meteorites. Science 150(3694):385

    Google Scholar 

  • Stauffer H (1961) Primordial argon and neon in carbonaceous chondrites and ureilites. Geochim Cosmochim Acta 24(1–2):70–82

    CAS  Google Scholar 

  • Storrie-Lombardi MC, Hoover RB (2004) Fossil signatures using elemental abundance distributions and Bayesian probabilistic classification. Proc SPIE 5555:18–30

    CAS  Google Scholar 

  • Studier MH, Hayatsu R, Anders E (1968) Origin of organic matter in early solar system-I. Hydrocarbons. Geochim Cosmochim Acta 32(2):151–173

    CAS  Google Scholar 

  • Swart PK, Grady MM, Pillinger CT (1983) A method for the identification and elimination of contamination during carbon isotopic analyses of extraterrestrial samples. Meteoritics 18(2):137–154

    CAS  Google Scholar 

  • Swindle TD, Olson EK (2002) The timing of aqueous weathering on Mars: clues from argon-40-argon-39 analyses of whole-rock samples of the nakhlites Nakhla and Lafayette. Meteoritics Planet Sci 37(S5):A138

    Google Scholar 

  • Tan WC, VanLandhgham SL (1967) Electron microscopy of biological-like structures in the Orgueil carbonaceous meteorite. Geophys J R Astron Soc 12(3):237

    Google Scholar 

  • Tasch P (1963) Identity of organized elements in carbonaceous chondrites. Science 142(3589):156–158

    PubMed  CAS  Google Scholar 

  • Tasch P (1964) Life-forms in meteorites and the problem of terrestrial contamination: a study in methodology. Ann N Y Acad Sci 105:929–950

    PubMed  CAS  Google Scholar 

  • Taubes G (1993) Bad science: the short life and weird times of cold fusion. Random House, New York

    Google Scholar 

  • Thomson KS (1991) Piltdown Man: The Great English mystery story. Am Scientist 79(3):194–201

    Google Scholar 

  • Thornton J (1890) Advanced physiography, 2nd edn. Longmans, Green, and Co, London

    Google Scholar 

  • Timofejev BW (1963) Lebensspuren in Meteoriten: Resultate einer microphytologischen analyse [Traces of life in meteorites: results of a microphytological analysis]. Grana Palynol 4(1):92–99

    Google Scholar 

  • Urey HC (1962a) Life-forms in meteorites: origin of life-like forms in carbonaceous chondrites. Nature 193(4821):1119–1123

    Google Scholar 

  • Urey HC (1962b) Lifelike forms in meteorites. Science 137(3530):623–626

    PubMed  CAS  Google Scholar 

  • Urey HC (1965) Organic material in meteorites: a review. Science 150(3694):387–388

    Google Scholar 

  • Urey HC (1966) Biological material in meteorites: a review. Science 151(3707):157–166

    PubMed  CAS  Google Scholar 

  • Urey HC, Arnold JR (1966) Biological materials in carbonaceous chondrites. In: Pittendrigh CS (ed) Biology and the exploration of Mars: report of a study. National Academies, Washington, DC, pp 114–124

    Google Scholar 

  • Urey HC, Cholnoky BJ, Berger R, Morrison P, Anders E, Papp A, Bourrelly P, Palmer CM, Nagy B, Hennessy DJ, Claus G, Tasch P, Ross R, Fitch FW, Fox SW, Dombrowski H, Mason B, Bernal JD, Meinschein W (1963) Panel discussion: identity of organized elements. Ann N Y Acad Sci 108(2):606–615

    Google Scholar 

  • Urey HC, Meinschein WG, Nagy B (1968) Comments on meteoritic hydrocarbons. Geochim Cosmochim Acta 32(6):665

    Google Scholar 

  • Vallentyne JR (1963) Environmental biophysics and microbial ubiquity. Ann N Y Acad Sci 108(2):342–352

    Google Scholar 

  • Vance P, Pockriss L, Como P (1957) Catch a falling star [Song]. http://lostpedia.wikia.com/wiki/Catch_a_Falling_Star. Accessed 18 June 2011

  • VanLandingham SL (1965a) Acid resistant microfossils from the Alais and Orgueil meteorites. Nova Hedwigia Z Kryptogamenk 10(1–2):161–176  +  Plates 144–149

    Google Scholar 

  • VanLandingham SL (1965b) Evidence for microfossils in the Alais and Orgueil carbonaceous meteorites. Nature 208(5014):947–948

    Google Scholar 

  • VanLandingham SL, Sun CN, Tan WC (1967) Origin of round-body structures in the Orgueil meteorite. Nature 216(5112):252–253

    Google Scholar 

  • Vdovykin GP (1964) “Organized elements” in carbonaceous chondrites. Geochem Int USSR 4:693–696

    Google Scholar 

  • Vdovykin GP (1967) Carbon matter of meteorites (organic compounds, diamonds, graphite) [NASA-TT-F-582]. Nauka, Moscow

    Google Scholar 

  • Vdovykin GP (1972) Meteorites and life. NASA (National Aeronautics and Space Administration) Technical Translation TTF (710):168–193

    Google Scholar 

  • Vdovykin GP (1973) The Mighei meteorite. Space Sci Rev 14(6):832–879

    Google Scholar 

  • Vinogradov AP, Vdovykin GP (1964) Multimolecular organic matter of carbonaceous chondrites. Geochem Int USSR 5:831–836

    Google Scholar 

  • Watson JS, Pearson VK, Gilmour I, Sephton MA (2003) Contamination by sesquiterpenoid derivatives in the Orgueil carbonaceous chondrite. Org Geochem 34(1):37–47

    CAS  Google Scholar 

  • Weichmann FG (1882) Fusion-structures in meteorites. Trans N Y Acad Sc 1:153–155

    Google Scholar 

  • West MW, Ponnamperuma C (1970) Chemical evolution and origin of life: a comprehensive bibliography. Space Life Sci 2(2):225–288

    PubMed  CAS  Google Scholar 

  • West MW, Gill ED, Kvenvolden KA (1975) Chemical evolution and origin of life: bibliography supplement 1973. Orig Life Evol Biosph 6(1–2):285–300

    CAS  Google Scholar 

  • Whale GF, Walsby AE (1984) Motility of the cyanobacterium Microcoleus chthonoplastes in mud. Br Phycol J 19(2):117–123

    Google Scholar 

  • Wickramasinghe C (2011a) Bacterial morphologies supporting cometary panspermia: a reappraisal. Int J Astrobiol 10(1):25–30

    Google Scholar 

  • Wickramasinghe C (2011b) Microfossils in meteors and comet dust: a vindication of panspermia. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#112

  • Wickramasinghe NC (2011c) Extraterrestrial life and censorship. arXiv:http://arxiv.org/abs/1104.1314

  • Wickramasinghe C, Wallis MK, Gibson CH, Wallis J, Al-Mufti S, Miyake N (2010) Bacterial morphologies in carbonaceous meteorites and comet dust. Proc SPIE 7819:781913

    Google Scholar 

  • Wiik HB (1956) The chemical composition of some stony meteorites. Geochim Cosmochim Acta 9(5–6):279–289

    CAS  Google Scholar 

  • Young JD, Martel J (2010) The rise and fall of nanobacteria. Sci Am 302(1):52–59

    PubMed  CAS  Google Scholar 

  • Youngbull C (2011) Fear of the unknown: do you believe in extraterrestrial life? Definitely maybe! J Cosmol 13(March): http://journalofcosmology.com/Life101.html#103

  • Zenobi R, Philippoz JM, Buseck PR, Zare RN (1989) Spatially resolved organic analysis of the Allende meteorite. Science 246(4933):1026–1029

    PubMed  CAS  Google Scholar 

  • Zhmur SI (2002) Possible environments of carbon hondrites accumulation. ESA Special Publications 518:493–494

    Google Scholar 

  • Zhmur SI, Gerasimenko LM (1999) Biomorphic forms in carbonaceous meteorite Alliende and possible ecological system - producer of organic matter of hondrites. Proc SPIE 3755:48–58

    CAS  Google Scholar 

  • Zhmur SI, Rozanov AY, Gorlenko VM (1997) Lithified remnants of microorganisms in carbonaceous chondrites. Geochem Int 35(1):58–60

    Google Scholar 

  • Zhmur SI, Gorlenko VM, Gerasimenko LM (1999) Comparative morphology of modern and ancient terrestrial bacteria and microfossils from carbonaceous meteorites. Microbiology 68(6):739–745

    CAS  Google Scholar 

  • Zhmur SI, Duda VI, Roizeman FM (2001) Microfossils in Early Archaen graphites of Aldan shield and some aspects of panspermia. Proc SPIE 4495:19–26

    Google Scholar 

  • Zigel F (1962) ЖИÐHБ B METEOPИTE [Life in a meteorite, English translation: CFSTI, JPRS-17326]. Ogonek 47:28–29

    Google Scholar 

Download references

Acknowledgment

We would like to thank Cheryl Buors, Neil John Maclean Health Sciences Library, University of Manitoba, for a tremendous job in collecting archaic references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Gordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gordon, R., Mcnichol, J.C. (2012). Recurrent Dreams of Life in Meteorites. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_29

Download citation

Publish with us

Policies and ethics