Skip to main content

Chemoprevention of Prostate Cancer with Cruciferous Vegetables: Role of Epigenetics

  • Chapter
  • First Online:
Nutrition, Diet and Cancer

Abstract

Globally, prostate cancer is the second most frequently diagnosed cancer in men although the incidence of cancer varies greatly throughout the world. Nutrition and diet are important modifiable risk factors for prostate cancer development. Epidemiological studies have shown an inverse association between cruciferous vegetable intake and the risk of developing prostate cancer. Here we focus specifically on the molecular mechanisms by which phytochemicals in cruciferous vegetables, sulforaphane (SFN), indole-3-carbinol (I3C) and its derivative 3,3′-diindolylmethane (DIM), may prevent the initiation of prostate cancer and slow tumorigenesis. We have particularly emphasized a possible role for epigenetics in this process as many dietary factors can modulate epigenetic alterations and alter susceptibility to disease. We have identified known and possible epigenetic mechanisms by which these phytochemicals can alter detoxification pathways, sex hormone signaling, and genes that regulate cell cycle, apoptosis, inflammation, angiogenesis and metastasis. The ability of SFN, I3C or DIM to target aberrant epigenetic patterns, in addition to their effects on detoxification/carcinogen metabolism, may make them effective chemoprevention agents at multiple stages of the prostate carcinogenesis pathway. The identification of dietary epigenetic modulators and their use either alone or in combination, may increase efficacy of anti-cancer therapies and prevention strategies, without serious side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Gupta S (2008) The role of histone deacetylases in prostate cancer. Epigenetics 3:300–309

    PubMed  Google Scholar 

  • Abdelbaqi K, Lack N, Guns ET, Kotha L, Safe S, Sanderson JT (2011) Antiandrogenic and growth inhibitory effects of ring-substituted analogs of 3,3′-diindolylmethane (Ring-DIMs) in hormone-responsive LNCaP human prostate cancer cells. Prostate. In press

    Google Scholar 

  • Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, Calin G, Wang H, Siefker-Radtke A, McConkey D, Bar-Eli M, Dinney C (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15:5060–5072

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4:1201–1215

    CAS  PubMed  Google Scholar 

  • Ai J, Wang Y, Dar JA, Liu J, Liu L, Nelson JB, Wang Z (2009) HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol Endocrinol 23:1963–1972

    CAS  PubMed  Google Scholar 

  • Ambrosini GL, de Klerk NH, Fritschi L, Mackerras D, Musk B (2008) Fruit, vegetable, vitamin A intakes, and prostate cancer risk. Prostate Cancer Prostatic Dis 1:61–66

    Google Scholar 

  • American Cancer Society (2011) Cancer facts & figures 2011. http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2011

  • Anderton MJ, Manson MM, Verschoyle R, Gescher A, Steward WP, Williams ML, Mager DE (2004a) Physiological modeling of formulated and crystalline 3,3'-diindolylmethane pharmacokinetics following oral administration in mice. Drug Metab Dispos 32:632–638

    CAS  PubMed  Google Scholar 

  • Anderton MJ, Manson MM, Verschoyle RD, Gescher A, Lamb JH, Farmer PB, Steward WP, Williams ML (2004b) Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin Cancer Res 10:5233–5241

    CAS  PubMed  Google Scholar 

  • Aurora AB, Biyashev D, Mirochnik Y, Zaichuk TA, Sanchez-Martinez C, Renault MA, Losordo D, Volpert OV (2010) NF-kappaB balances vascular regression and angiogenesis via chromatin remodeling and NFAT displacement. Blood 116:475–484

    CAS  PubMed  Google Scholar 

  • Azarenko O, Okouneva T, Singletary KW, Jordan MA, Wilson L (2008) Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane. Carcinogenesis 29:2360–2368

    CAS  PubMed  Google Scholar 

  • Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappa-B. J Clin Invest 107:241–246

    CAS  PubMed  Google Scholar 

  • Batra S, Sahu RP, Kandala PK, Srivastava SK (2010) Benzyl isothiocyanate-mediated inhibition of histone deacetylase leads to NF-kappaB turnoff in human pancreatic carcinoma cells. Mol Cancer Ther 9:1596–1608

    CAS  PubMed  Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    CAS  PubMed  Google Scholar 

  • Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10:687–692

    CAS  PubMed  Google Scholar 

  • Bhatnagar N, Li X, Chen Y, Zhou X, Garrett SH, Guo B (2009) 3,3'-diindolylmethane enhances the efficacy of butyrate in colon cancer prevention through down-regulation of survivin. Cancer Prev Res 2:581–589

    CAS  Google Scholar 

  • Boumber Y, Issa JP (2011) Epigenetics in cancer: what’s the future? Oncology (Williston Park) 25:220–226, 228

    Google Scholar 

  • Bovee TF, Schoonen WG, Hamers AR, Bento MJ, Peijnenburg AA (2008) Screening of synthetic and plant-derived compounds for (anti)estrogenic and (anti)androgenic activities. Anal Bioanal Chem 390:1111–1119

    CAS  PubMed  Google Scholar 

  • Bradlow HL, Zeligs MA (2010) Diindolylmethane (DIM) spontaneously forms from indole-3-carbinol (I3C) during cell culture experiments. In Vivo 24:387–391

    CAS  PubMed  Google Scholar 

  • Chiao JW, Chung FL, Kancherla R, Ahmed T, Mittelman A, Conaway CC (2002) Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int J Oncol 20:631–636

    CAS  PubMed  Google Scholar 

  • Chinnakannu K, Chen D, Li Y, Wang Z, Dou QP, Reddy GP, Sarkar FH (2009) Cell cycle-dependent effects of 3,3'-diindolylmethane on proliferation and apoptosis of prostate cancer cells. J Cell Physiol 219:94–99

    CAS  PubMed  Google Scholar 

  • Chinni SR, Sarkar FH (2002) Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin Cancer Res 8:1228–1236

    CAS  PubMed  Google Scholar 

  • Chinni SR, Li Y, Upadhyay S, Koppolu PK, Sarkar FH (2001) Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 20:2927–2936

    CAS  PubMed  Google Scholar 

  • Cho SD, Li G, Hu H, Jiang C, Kang KS, Lee YS, Kim SH, Lu J (2005) Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells. Nutr Cancer 52:213–224

    CAS  PubMed  Google Scholar 

  • Cho HJ, Park SY, Kim EJ, Kim JK, Park JH (2011) 3,3'-Diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Mol Carcinog 50:100–112

    CAS  PubMed  Google Scholar 

  • Choi S, Lew KL, Xiao H, Herman-Antosiewicz A, Xiao D, Brown CK, Singh SV (2007) D, L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 28:151–162

    CAS  PubMed  Google Scholar 

  • Chou CW, Wu MS, Huang WC, Chen CC (2011) HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PLoS One 6:e18087

    CAS  PubMed  Google Scholar 

  • Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269:291–304

    CAS  PubMed  Google Scholar 

  • Clarke JD, Hsu A, Yu Z, Dashwood RH, Ho E (2011) Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res 55:999–1009

    CAS  PubMed  Google Scholar 

  • Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68

    CAS  PubMed  Google Scholar 

  • Colli JL, Amling CL (2009) Chemoprevention of prostate cancer: what can be recommended to patients? Curr Urol Rep 10:165–171

    PubMed  Google Scholar 

  • Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MSA, Stierer T, Garrett-Mayer E, Argani P, Davidson NE, Talalay P, Kensler TW, Visvanathan K (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28:1485–1490

    CAS  PubMed  Google Scholar 

  • Cramer JM, Jeffery EH (2011) Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutr Cancer 63:196–201

    CAS  PubMed  Google Scholar 

  • Dashwood RH (1998) Indole-3-carbinol: anticarcinogen or tumor promoter in brassica vegetables? Chem Biol Interact 110:1–5

    CAS  PubMed  Google Scholar 

  • Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17:363–369

    CAS  PubMed  Google Scholar 

  • DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI (2003) Pathological and molecular aspects of prostate cancer. Lancet 361:955–964

    CAS  PubMed  Google Scholar 

  • Dobosy JR, Roberts JLW, Fu VX, Jarrard DF (2007) The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J Urol 177:822–831

    CAS  PubMed  Google Scholar 

  • Egner PA, Chen JG, Wang JB, Wu Y, Sun Y, Lu JH, Zhu J, Zhang YH, Chen YS, Friesen MD, Jacobson LP, Munoz A, Ng D, Qian GS, Zhu YR, Chen TY, Botting NP, Zhang Q, Fahey JW, Talalay P, Groopman JD, Kensler TW (2011) Bioavailability of sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev Res 4:384–395

    CAS  Google Scholar 

  • Elsharkawy AM, Oakley F, Lin F, Packham G, Mann DA, Mann J (2010) The NF-kappaB p50:p50: HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J Hepatol 53:519–527

    CAS  PubMed  Google Scholar 

  • Fan S, Meng Q, Auborn K, Carter T, Rosen EM (2006) BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer 94:407–426

    CAS  PubMed  Google Scholar 

  • Fares F, Azzam N, Appel B, Fares B, Stein A (2010) The potential efficacy of 3,3'-diindolylmethane in prevention of prostate cancer development. Eur J Cancer Prev 19:199–203

    CAS  PubMed  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    CAS  PubMed  Google Scholar 

  • Gamet-Payrastre L (2006) Signaling pathways and intracellular targets of sulforaphane mediating cell cycle arrest and apoptosis. Curr Cancer Drug Targets 6:135–145

    CAS  PubMed  Google Scholar 

  • Garikapaty VP, Ashok BT, Chen YG, Mittelman A, Iatropoulos M, Tiwari RK (2005) Anti-carcinogenic and anti-metastatic properties of indole-3-carbinol in prostate cancer. Oncol Rep 13:89–93

    CAS  PubMed  Google Scholar 

  • Garikapaty VP, Ashok BT, Tadi K, Mittelman A, Tiwari RK (2006a) 3,3'-Diindolylmethane downregulates pro-survival pathway in hormone independent prostate cancer. Biochem Biophys Res Commun 340:718–725

    CAS  PubMed  Google Scholar 

  • Garikapaty VP, Ashok BT, Tadi K, Mittelman A, Tiwari RK (2006b) Synthetic dimer of indole-3-carbinol: second generation diet derived anti-cancer agent in hormone sensitive prostate cancer. Prostate 66:453–462

    CAS  PubMed  Google Scholar 

  • Garrison PM, Rogers JM, Brackney WR, Denison MS (2000) Effects of histone deacetylase inhibitors on the Ah receptor gene promoter. Arch Biochem Biophys 374:161–171

    CAS  PubMed  Google Scholar 

  • Gasparian AV, Yao YJ, Kowalczyk D, Lyakh LA, Karseladze A, Slaga TJ, Budunova IV (2002) The role of IKK in constitutive activation of NF-kappaB transcription factor in prostate carcinoma cells. J Cell Sci 115:141–151

    CAS  PubMed  Google Scholar 

  • Gasper AV, Traka M, Bacon JR, Smith JA, Taylor MA, Hawkey CJ, Barrett DA, Mithen RF (2007) Consuming broccoli does not induce genes associated with xenobiotic metabolism and cell cycle control in human gastric mucosa. J Nutr 137:1718–1724

    CAS  PubMed  Google Scholar 

  • Gibbs A, Schwartzman J, Deng V, Alumkal J (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci U S A 106:16663–16668

    CAS  PubMed  Google Scholar 

  • Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2003) A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol Biomarkers Prev 12:1403–1409

    CAS  PubMed  Google Scholar 

  • Glauben R, Sonnenberg E, Zeitz M, Siegmund B (2009) HDAC inhibitors in models of inflammation-related tumorigenesis. Cancer Lett 280:154–159

    CAS  PubMed  Google Scholar 

  • Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG (2003) Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res 9:2673–2677

    CAS  PubMed  Google Scholar 

  • Graham S, Haughey B, Marshall J, Priore R, Byers T, Rzepka T, Mettlin C, Pontes JE (1983) Diet in the epidemiology of carcinoma of the prostate gland. J Natl Cancer Inst 70:687–692

    CAS  PubMed  Google Scholar 

  • Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59:177–189

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Harden SV, Guo Z, Epstein JI, Sidransky D (2003) Quantitative GSTP1 methylation clearly distinguishes benign prostatic tissue and limited prostate adenocarcinoma. J Urol 169:1138–1142

    CAS  PubMed  Google Scholar 

  • Heath EI, Heilbrun LK, Li J, Vaishampayan U, Harper F, Pemberton P, Sarkar FH (2010) A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3'- Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am J Transl Res 2:402–411

    CAS  PubMed  Google Scholar 

  • Henrique R, Costa VL, Cerveira N, Carvalho AL, Hoque MO, Ribeiro FR, Oliveira J, Teixeira MR, Sidransky D, Jeronimo C (2006) Hypermethylation of Cyclin D2 is associated with loss of mRNA expression and tumor development in prostate cancer. J Mol Med 84:911–918

    CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    CAS  PubMed  Google Scholar 

  • Herman-Antosiewicz A, Johnson DE, Singh SV (2006) Sulforaphane causes autophagy to inhibit release of cytochrome c and apoptosis in human prostate cancer cells. Cancer Res 66:5828–5835

    CAS  PubMed  Google Scholar 

  • Herman-Antosiewicz A, Xiao H, Lew KL, Singh SV (2007) Induction of p21 protein protects against sulforaphane-induced mitotic arrest in LNCaP human prostate cancer cell line. Mol Cancer Ther 6:1673–1681

    CAS  PubMed  Google Scholar 

  • Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL, Anderson KC (2005) Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 102:8567–8572

    CAS  PubMed  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    CAS  PubMed  Google Scholar 

  • Ho E, Song Y (2009) Zinc and prostatic cancer. Curr Opin Clin Nutr Metab Care 12:640–645

    CAS  PubMed  Google Scholar 

  • Hooven LA, Mahadevan B, Keshava C, Johns C, Pereira C, Desai D, Amin S, Weston A, Baird WM (2005) Effects of suberoylanilide hydroxamic acid and trichostatin A on induction of cytochrome P450 enzymes and benzo[a]pyrene DNA adduct formation in human cells. Bioorg Med Chem Lett 15:1283–1287

    CAS  PubMed  Google Scholar 

  • Hotte SJ, Saad F (2010) Current management of castrate-resistant prostate cancer. Curr Oncol 17(Suppl 2):S72–S79

    PubMed  Google Scholar 

  • Howells LM, Moiseeva EP, Neal CP, Foreman BE, Andreadi CK, Sun YY, Hudson EA, Manson MM (2007) Predicting the physiological relevance of in vitro cancer preventive activities of phytochemicals. Acta Pharmacol Sin 28:1274–1304

    CAS  PubMed  Google Scholar 

  • Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK (2011) SEER cancer statistics review, 1975–2008. National Cancer Institute, Bethesda

    Google Scholar 

  • Hsing AW, McLaughlin JK, Schuman LM, Bjelke E, Gridley G, Wacholder S, Chien HT, Blot WJ (1990) Diet, tobacco use, and fatal prostate cancer: results from the Lutheran Brotherhood Cohort Study. Cancer Res 50:6836–6840

    CAS  PubMed  Google Scholar 

  • Hsing AW, Sakoda LC, Chua SC (2007) Obesity, metabolic syndrome, and prostate cancer. Am J Clin Nutr 86:843S–857S

    CAS  Google Scholar 

  • Hsu JC, Zhang J, Dev A, Wing A, Bjeldanes LF, Firestone GL (2005) Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells. Carcinogenesis 26:1896–1904

    CAS  PubMed  Google Scholar 

  • Hsu JC, Dev A, Wing A, Brew CT, Bjeldanes LF, Firestone GL (2006) Indole-3-carbinol mediated cell cycle arrest of LNCaP human prostate cancer cells requires the induced production of activated p53 tumor suppressor protein. Biochem Pharmacol 72:1714–1723

    CAS  PubMed  Google Scholar 

  • Hsu A, Bruno RS, Lohr CV, Taylor AW, Dashwood RH, Bray TM, Ho E (2011) Dietary soy and tea mitigate chronic inflammation and prostate cancer via NFkappaB pathway in the Noble rat model. J Nutr Biochem 22:502–510

    CAS  PubMed  Google Scholar 

  • Hu R, Hebbar V, Kim BR, Chen C, Winnik B, Buckley B, Soteropoulos P, Tolias P, Hart RP, Kong AN (2004) In vivo pharmacokinetics and regulation of gene expression profiles by isothiocyanate sulforaphane in the rat. J Pharmacol Exp Ther 310:263–271

    CAS  PubMed  Google Scholar 

  • Hu R, Khor TO, Shen G, Jeong WS, Hebbar V, Chen C, Xu C, Reddy B, Chada K, Kong AN (2006) Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis 27:2038–2046

    CAS  PubMed  Google Scholar 

  • Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A, Nagy TR (2007) SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67:6612–6618

    CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer (2010) GLOBOCAN 2008, Cancer fact sheet: prostate cancer. http://globocan.iarc.fr/factsheets/cancers/prostate.asp

  • Jackson SJ, Singletary KW (2004) Sulforaphane: a naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization. Carcinogenesis 25:219–227

    CAS  PubMed  Google Scholar 

  • Jain MG, Hislop GT, Howe GR, Ghadirian P (1999) Plant foods, antioxidants, and prostate cancer risk: findings from case-control studies in Canada. Nutr Cancer 34:173–184

    CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  • Jeon KI, Rih JK, Kim HJ, Lee YJ, Cho CH, Goldberg ID, Rosen EM, Bae I (2003) Pretreatment of indole-3-carbinol augments TRAIL-induced apoptosis in a prostate cancer cell line, LNCaP. FEBS Lett 544:246–251

    CAS  PubMed  Google Scholar 

  • Jeronimo C, Henrique R, Hoque MO, Mambo E, Ribeiro FR, Varzim G, Oliveira J, Teixeira MR, Lopes C, Sidransky D (2004) A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res 10:8472–8478

    CAS  PubMed  Google Scholar 

  • John EM, Stern MC, Sinha R, Koo J (2011) Meat consumption, cooking practices, meat mutagens, and risk of prostate cancer. Nutr Cancer 63:525–537

    PubMed  Google Scholar 

  • Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    CAS  PubMed  Google Scholar 

  • Joseph MA, Moysich KB, Freudenheim JL, Shields PG, Bowman ED, Zhang Y, Marshall JR, Ambrosone CB (2004) Cruciferous vegetables, genetic polymorphisms in Glutathione S-Transferases M1 and T1, and prostate cancer risk. Nutr Cancer 50:206–213

    CAS  PubMed  Google Scholar 

  • Kallifatidis G, Labsch S, Rausch V, Mattern J, Gladkich J, Moldenhauer G, Buchler MW, Salnikov AV, Herr I (2011) Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther 19:188–195

    CAS  PubMed  Google Scholar 

  • Kassahun K, Davis M, Hu P, Martin B, Baillie T (1997) Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of Phase I metabolites and glutathione conjugates. Chem Res Toxicol 10:1228–1233

    CAS  PubMed  Google Scholar 

  • Kawai Y, Garduno L, Theodore M, Yang J, Arinze IJ (2011) Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 286:7629–7640

    CAS  PubMed  Google Scholar 

  • Keum YS, Khor TO, Lin W, Shen G, Kwon KH, Barve A, Li W, Kong AN (2009) Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm Res 26:2324–2331

    CAS  PubMed  Google Scholar 

  • Key TJ, Allen N, Appleby P, Overvad K, Tjonneland A, Miller A, Boeing H, Karalis D, Psaltopoulou T, Berrino F, Palli D, Panico S, Tumino R, Vineis P, Bueno-De-Mesquita HB, Kiemeney L, Peeters PH, Martinez C, Dorronsoro M, Gonzalez CA, Chirlaque MD, Quiros JR, Ardanaz E, Berglund G, Egevad L, Hallmans G, Stattin P, Bingham S, Day N, Gann P, Kaaks R, Ferrari P, Riboli E (2004) Fruits and vegetables and prostate cancer: no association among 1104 cases in a prospective study of 130544 men in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer 109:119–124

    CAS  PubMed  Google Scholar 

  • Kim SH, Singh SV (2009) D, L-Sulforaphane causes transcriptional repression of androgen receptor in human prostate cancer cells. Mol Cancer Ther 8:1946–1954

    CAS  PubMed  Google Scholar 

  • Kim HR, Kim EJ, Yang SH, Jeong ET, Park C, Lee JH, Youn MJ, So HS, Park R (2006) Trichostatin A induces apoptosis in lung cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway? Exp Mol Med 38:616–624

    CAS  PubMed  Google Scholar 

  • Kim NH, Kim SN, Kim YK (2011) Involvement of HDAC1 in E-cadherin expression in prostate cancer cells; its implication for cell motility and invasion. Biochem Biophys Res Commun 404:915–921

    CAS  PubMed  Google Scholar 

  • Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallagher RP, Wilkens LR, John EM, Howe GR, Dreon DM, West DW, Paffenbarger RS (2000) Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Biomarkers Prev 9:795–804

    CAS  PubMed  Google Scholar 

  • Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9

    PubMed  Google Scholar 

  • Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffrey EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548

    CAS  PubMed  Google Scholar 

  • Le Marchand L, Hankin JH, Kolonel LN, Wilkens LR (1991) Vegetable and fruit consumption in relation to prostate cancer risk in Hawaii: a reevaluation of the effect of dietary beta-carotene. Am J Epidemiol 133:215–219

    PubMed  Google Scholar 

  • Li Y, Li X, Sarkar FH (2003) Gene expression profiles of I3C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. J Nutr 133:1011–1019

    CAS  PubMed  Google Scholar 

  • Li LC, Carroll PR, Dahiya R (2005a) Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 97:103–115

    CAS  PubMed  Google Scholar 

  • Li Y, Chinni SR, Sarkar FH (2005b) Selective growth regulatory and pro-apoptotic effects of DIM is mediated by AKT and NF-kappaB pathways in prostate cancer cells. Front Biosci 10:236–243

    CAS  PubMed  Google Scholar 

  • Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69:6704–6712

    CAS  PubMed  Google Scholar 

  • Li Y, Li X, Guo B (2010a) Chemopreventive agent 3,3'-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res 70:646–654

    CAS  PubMed  Google Scholar 

  • Li Y, Vandenboom TG, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH (2010b) miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 70:1486–1495

    CAS  PubMed  Google Scholar 

  • Lubet RA, Heckman BM, De Flora SL, Steele VE, Crowell JA, Juliana MM, Grubbs CJ (2011) Effects of 5,6-benzoflavone, indole-3-carbinol (I3C) and diindolylmethane (DIM) on chemically-induced mammary carcinogenesis: is DIM a substitute for I3C? Oncol Rep 26:731–736

    CAS  PubMed  Google Scholar 

  • Meeran SM, Patel SN, Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 5:e11457

    PubMed  Google Scholar 

  • Mercado N, Thimmulappa R, Thomas CM, Fenwick PS, Chana KK, Donnelly LE, Biswal S, Ito K, Barnes PJ (2011) Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406:292–298

    CAS  PubMed  Google Scholar 

  • Mithen R (2001) Glucosinolates – biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103

    CAS  Google Scholar 

  • Mongroo PS, Rustgi AK (2010) The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther 10:219–222

    CAS  PubMed  Google Scholar 

  • Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    CAS  PubMed  Google Scholar 

  • Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH (2006a) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20:506–508

    CAS  PubMed  Google Scholar 

  • Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E (2006b) Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 27:811–819

    CAS  PubMed  Google Scholar 

  • Myzak MC, Tong P, Dashwood WM, Dashwood RH, Ho E (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232:227–234

    CAS  Google Scholar 

  • Nachshon-Kedmi M, Yannai S, Haj A, Fares FA (2003) Indole-3-carbinol and 3,3'-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem Toxicol 41:745–752

    CAS  PubMed  Google Scholar 

  • Nachshon-Kedmi M, Fares FA, Yannai S (2004a) Therapeutic activity of 3,3'-diindolylmethane on prostate cancer in an in vivo model. Prostate 61:153–160

    CAS  PubMed  Google Scholar 

  • Nachshon-Kedmi M, Yannai S, Fares FA (2004b) Induction of apoptosis in human prostate cancer cell line, PC3, by 3,3'-diindolylmethane through the mitochondrial pathway. Br J Cancer 91:1358–1363

    CAS  PubMed  Google Scholar 

  • Nakagawa M, Oda Y, Eguchi T, Aishima S, Yao T, Hosoi F, Basaki Y, Ono M, Kuwano M, Tanaka M, Tsuneyoshi M (2007) Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep 18:769–774

    CAS  PubMed  Google Scholar 

  • Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50:213–221

    CAS  PubMed  Google Scholar 

  • Olsson M, Gustafsson O, Skogastierna C, Tolf A, Rietz BD, Morfin R, Rane A, Ekstrom L (2007) Regulation and expression of human CYP7B1 in prostate: overexpression of CYP7B1 during progression of prostatic adenocarcinoma. Prostate 67:1439–1446

    CAS  PubMed  Google Scholar 

  • Parasramka MA, Ho E, Williams DE, Dashwood RH (2011) MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog. In Press

    Google Scholar 

  • Parnaud G, Li P, Cassar G, Rouimi P, Tulliez J, Combaret L, Gamet-Payrastre L (2004) Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr Cancer 48:198–206

    CAS  PubMed  Google Scholar 

  • Perry AS, Watson RW, Lawler M, Hollywood D (2010) The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol 7:668–680

    CAS  PubMed  Google Scholar 

  • Rajendran P, Delage B, Dashwood WM, Yu TW, Wuth B, Williams DE, Ho E, Dashwood RH (2011a) Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol Cancer 10:68

    CAS  PubMed  Google Scholar 

  • Rajendran P, Williams DE, Ho E, Dashwood RH (2011b) Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 46:181–199

    CAS  PubMed  Google Scholar 

  • Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947

    CAS  PubMed  Google Scholar 

  • Reed GA, Sunega JM, Sullivan DK, Gray JC, Mayo MS, Crowell JA, Hurwitz A (2008) Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3'-diindolylmethane in healthy subjects. Cancer Epidemiol Biomarkers Prev 17:2619–2624

    CAS  PubMed  Google Scholar 

  • Rodriguez-Gonzalez A, Lin T, Ikeda AK, Simms-Waldrip T, Fu C, Sakamoto KM (2008) Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res 68:2557–2560

    CAS  PubMed  Google Scholar 

  • Sarkar FH, Li Y (2004) Indole-3-carbinol and prostate cancer. J Nutr 134:3493S–3498S

    CAS  PubMed  Google Scholar 

  • Sawa H, Murakami H, Ohshima Y, Sugino T, Nakajyo T, Kisanuki T, Tamura Y, Satone A, Ide W, Hashimoto I, Kamada H (2001) Histone deacetylase inhibitors such as sodium butyrate and trichostatin A induce apoptosis through an increase of the bcl-2-related protein Bad. Brain Tumor Pathol 18:109–114

    CAS  PubMed  Google Scholar 

  • Schuurman AG, Goldbohm RA, Dorant E, van den Brandt PA (1998) Vegetable and fruit consumption and prostate cancer risk: a cohort study in The Netherlands. Cancer Epidemiol Biomarkers Prev 7:673–680

    CAS  PubMed  Google Scholar 

  • Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    CAS  PubMed  Google Scholar 

  • Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (1998) Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev 7:1091–1100

    CAS  PubMed  Google Scholar 

  • Shapiro TA, Fahey JW, Dinkova-Kostova AT, Holtzclaw WD, Stephenson KK, Wade KL, Ye L, Talalay P (2006) Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutr Cancer 55:53–62

    CAS  PubMed  Google Scholar 

  • Shen G, Xu C, Chen C, Hebbar V, Kong AN (2006) p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemother Pharmacol 57:317–327

    CAS  PubMed  Google Scholar 

  • Singh AV, Xiao D, Lew KL, Dhir R, Singh SV (2004) Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25:83–90

    CAS  PubMed  Google Scholar 

  • Singh SV, Warin R, Xiao D, Powolny AA, Stan SD, Arlotti JA, Zeng Y, Hahm ER, Marynowski SW, Bommareddy A, Desai D, Amin S, Parise RA, Beumer JH, Chambers WH (2009) Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res 69:2117–2125

    CAS  PubMed  Google Scholar 

  • Souli E, Machluf M, Morgenstern A, Sabo E, Yannai S (2008) Indole-3-carbinol (I3C) exhibits inhibitory and preventive effects on prostate tumors in mice. Food Chem Toxicol 46:863–870

    CAS  PubMed  Google Scholar 

  • Spurling CC, Godman CA, Noonan EJ, Rasmussen TP, Rosenberg DW, Giardina C (2008) HDAC3 overexpression and colon cancer cell proliferation and differentiation. Mol Carcinog 47:137–147

    CAS  PubMed  Google Scholar 

  • Staub RE, Onisko B, Bjeldanes LF (2006) Fate of 3,3'-diindolylmethane in cultured MCF-7 human breast cancer cells. Chem Res Toxicol 19:436–442

    CAS  PubMed  Google Scholar 

  • Steinbrecher A, Nimptsch K, Husing A, Rohrmann S, Linseisen J (2009) Dietary glucosinolate intake and risk of prostate cancer in the EPIC-Heidelberg cohort study. Int J Cancer 125:2179–2186

    CAS  PubMed  Google Scholar 

  • Stoner G, Casto B, Ralston S, Roebuck B, Pereira C, Bailey G (2002) Development of a multi-organ rat model for evaluating chemopreventive agents: efficacy of indole-3-carbinol. Carcinogenesis 23:265–272

    CAS  PubMed  Google Scholar 

  • Strait KA, Warnick CT, Ford CD, Dabbas B, Hammond EH, Ilstrup SJ (2005) Histone deacetylase inhibitors induce G2-checkpoint arrest and apoptosis in cisplatinum-resistant ovarian cancer cells associated with overexpression of the Bcl-2-related protein Bad. Mol Cancer Ther 4:603–611

    CAS  PubMed  Google Scholar 

  • Stresser DM, Bjeldanes LF, Bailey GS, Williams DE (1995) The anticarcinogen 3,3'-diindolylmethane is an inhibitor of cytochrome P-450. J Biochem Toxicol 10:191–201

    CAS  PubMed  Google Scholar 

  • Takahashi N, Dashwood RH, Bjeldanes LF, Williams DE, Bailey GS (1995) Mechanisms of indole-3-carbinol (I3C) anticarcinogenesis: inhibition of aflatoxin B1-DNA adduction and mutagenesis by I3C acid condensation products. Food Chem Toxicol 33:851–857

    CAS  PubMed  Google Scholar 

  • Tokizane T, Shiina H, Igawa M, Enokida H, Urakami S, Kawakami T, Ogishima T, Okino ST, Li LC, Tanaka Y, Nonomura N, Okuyama A, Dahiya R (2005) Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res 11:5793–5801

    CAS  PubMed  Google Scholar 

  • Traka M, Gasper AV, Smith JA, Hawkey CJ, Bao Y, Mithen RF (2005) Transcriptome analysis of human colon Caco-2 cells exposed to sulforaphane. J Nutr 135:1865–1872

    CAS  PubMed  Google Scholar 

  • Traka M, Gasper AV, Melchini A, Bacon JR, Needs PW, Frost V, Chantry A, Jones AM, Ortori CA, Barrett DA, Ball RY, Mills RD, Mithen RF (2008) Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS One 3:e2568

    PubMed  Google Scholar 

  • Traka MH, Spinks CA, Doleman JF, Melchini A, Ball RY, Mills RD, Mithen RF (2010) The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer. Mol Cancer 9:189

    PubMed  Google Scholar 

  • Trtkova K, Paskova L, Matijescukova N, Strnad M, Kolar Z (2010) Binding of AR to SMRT/N-CoR complex and its co-operation with PSA promoter in prostate cancer cells treated with natural histone deacetylase inhibitor NaB. Neoplasma 57:406–414

    CAS  PubMed  Google Scholar 

  • Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S, Ward A, Korf U, Wiemann S, Sahin O (2010) miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 29:4297–4306

    CAS  PubMed  Google Scholar 

  • Venkateswaran V, Klotz LH (2010) Diet and prostate cancer: mechanisms of action and implications for chemoprevention. Nat Rev Urol 7:442–453

    CAS  PubMed  Google Scholar 

  • Vivar OI, Lin CL, Firestone GL, Bjeldanes LF (2009) 3,3'-Diindolylmethane induces a G(1) arrest in human prostate cancer cells irrespective of androgen receptor and p53 status. Biochem Pharmacol 78:469–476

    CAS  PubMed  Google Scholar 

  • Wang L, Liu D, Ahmed T, Chung FL, Conaway C, Chiao JW (2004) Targeting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int J Oncol 24:187–192

    PubMed  Google Scholar 

  • Wang LG, Beklemisheva A, Liu XM, Ferrari AC, Feng J, Chiao JW (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog 46:24–31

    CAS  PubMed  Google Scholar 

  • Wang TT, Schoene NW, Milner JA, Kim YS (2011) Broccoli-derived phytochemicals indole-3-carbinol and 3,3'-diindolylmethane exerts concentration-dependent pleiotropic effects on prostate cancer cells: Comparison with other cancer preventive phytochemicals. Mol Carcinog. In Press

    Google Scholar 

  • Weichert W, Roske A, Gekeler V, Beckers T, Stephan C, Jung K, Fritzsche FR, Niesporek S, Denkert C, Dietel M, Kristiansen G (2008) Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 98:604–610

    CAS  PubMed  Google Scholar 

  • Weng JR, Tsai CH, Kulp SK, Chen CS (2008) Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett 262:153–163

    CAS  PubMed  Google Scholar 

  • Wortelboer HM, de Kruif CA, van Iersel AA, Falke HE, Noordhoek J, Blaauboer BJ (1992) Acid reaction products of indole-3-carbinol and their effects on cytochrome P450 and phase II enzymes in rat and monkey hepatocytes. Biochem Pharmacol 43:1439–1447

    CAS  PubMed  Google Scholar 

  • Xu C, Shen G, Chen C, Gelinas C, Kong AN (2005) Suppression of NF-kappa-B and NF-kappa-B-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495

    CAS  PubMed  Google Scholar 

  • Ye L, Dinkova-Kostova AT, Wade KL, Zhang Y, Shapiro TA, Talalay P (2002) Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin Chim Acta 316:43–53

    CAS  PubMed  Google Scholar 

  • Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, Foster BA, Kan YW, Kong AN (2010) Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 5:e8579

    PubMed  Google Scholar 

  • Zhang P (1999) The cell cycle and development: redundant roles of cell cycle regulators. Curr Opin Cell Biol 11:655–662

    CAS  PubMed  Google Scholar 

  • Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D (2011) NF-{kappa}B dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A 108:9184–9189

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research conducted in the authors’ laboratory is supported by NIH grants CA90890, CA65525, CA122906, CA122959, CA80176, and by NIEHS Center grant P30 ES00210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Beaver, L.M., Williams, D.E., Dashwood, R.H., Ho, E. (2012). Chemoprevention of Prostate Cancer with Cruciferous Vegetables: Role of Epigenetics. In: Shankar, S., Srivastava, R. (eds) Nutrition, Diet and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2923-0_3

Download citation

Publish with us

Policies and ethics