Skip to main content

Chondrocytes and Mesenchymal Stem Cells in Cartilage Tissue Engineering and in the Regenerative Therapy of Joint Diseases

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 5

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 5))

Abstract

Regenerative therapy in orthopaedic applications has the burden to compete with already successful treatment options for joint diseases. Today, localized cartilage defects can effectively be treated by matrix-assisted autologous chondrocyte transplantation. However, this requires chondrocyte harvesting from healthy parts of the joint and makes the surgical performance a two-stage procedure. Mesenchymal stem cells (MSC) would offer the possibility to spare the first step. But there are differences between chondrocytes and MSC that still put their suitability for this task under question.

In tissue engineering, cells have to complete steps in chondrogenic differentiation. Current studies suggest that there exist major differences in quality, speed and quantity between chondrocytes and MSC passing the chondrogenic pathway. Chondrogenic hypertrophy still poses a major problem in the usage of MSC.

End stage degenerative joint disease, osteoarthritis, is currently being treated with endoprosthesis implantation. Due to the multi-faceted nature of the disease it seems unlikely to become solely treated by a regenerative approach. However, there might be certain aspects, like inflammation, that could possibly be targeted by MSC therapy. Other possible indications and their clinical limitations will be discussed. All regenerative approaches will be under the surveillance of drug laws, that require a high standard in preclinical and clinical data. It will be the task for the future to develop a set of tools in order to meet those demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed TA, Hincke MT (2010) Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev 16(3):305–329

    Article  PubMed  CAS  Google Scholar 

  • Bernstein P, Dong M, Corbeil D, Gelinsky M, Günther K-P, Fickert S (2008) Pellet culture elicits superior chondrogenic redifferentiation than alginate-based systems. Biotechnol Prog 25(4):1146–1152

    Article  Google Scholar 

  • Bernstein P, Bornhäuser M, Günther K-P, Stiehler M (2009a) Knochen Tissue Engineering in der klinischen Anwendung – eine Standortbestimmung. Orthopade 38(11):1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Bernstein P, Dong M, Graupner S, Corbeil D, Gelinsky M, Günther KP, Fickert S (2009b) Sox9 expression of alginate-encapsulated chondrocytes is stimulated by low cell density. J Biomed Mater Res A 91A(3):910–918

    Article  CAS  Google Scholar 

  • Bernstein P, Sticht C, Jacobi A, Liebers C, Manthey S, Stiehler M (2010) Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation. Osteoarthritis Cartilage 18(12):1596–1607

    Article  PubMed  CAS  Google Scholar 

  • Bijlsma JW, Berenbaum F, Lafeber FP (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377(9783):2115–2126

    Article  PubMed  Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  PubMed  CAS  Google Scholar 

  • Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BHI (2005) Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur Cell Mater 9:58–67

    PubMed  CAS  Google Scholar 

  • Darling EM, Athanasiou KA (2005) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23:425–432

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  • Gloria A, De Santis R, Ambrosio L (2010) Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 8(2):57–67

    PubMed  CAS  Google Scholar 

  • Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44

    Article  PubMed  CAS  Google Scholar 

  • Ichinose S, Muneta T, Koga H, Segawa Y, Tagami M, Tsuji K, Sekiya I (2009) Morphological differences during in vitro chondrogenesis of bone marrow-, synovium-MSCs, and chondrocytes. Lab Invest 90(2):210–221

    Article  PubMed  Google Scholar 

  • James CG, Appleton CT, Ulici V, Underhill TM, Beier F (2005) Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy. Mol Biol Cell 16(11):5316–5333

    Article  PubMed  CAS  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272

    Article  PubMed  CAS  Google Scholar 

  • Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F 3rd (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89(10):2105–2112

    Article  PubMed  Google Scholar 

  • Macdonald GIA, Augello A, De Bari C (2011) Mesenchymal stem cells: re-establishing immunological tolerance in autoimmune rheumatic diseases. Arthritis Rheum. doi:21647863

  • Marquass B, Schulz R, Hepp P, Zscharnack M, Aigner T, Schmidt S, Stein F, Richter R, Osterhoff G, Aust G, Josten C, Bader A (2011) Matrix-associated implantation of predifferentiated mesenchymal stem cells versus articular chondrocytes: in vivo results of cartilage repair after 1 year. Am J Sports Med. doi:21527412

  • Merx H, Dreinhofer KE, Gunther KP (2007) Socioeconomic relevance of osteoarthritis in Germany. Z Orthop Unfall 145(4):421–429

    Article  PubMed  CAS  Google Scholar 

  • Mishra R, Singh A, Chandra V, Negi MP, Tripathy BC, Prakash J, Gupta V (2011) A comparative analysis of serological parameters and oxidative stress in osteoarthritis and rheumatoid arthritis. Rheumatol Int 2011:5

    Google Scholar 

  • Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48(12):3464–3474

    Article  PubMed  Google Scholar 

  • Mwale F, Rampersad S, Richard H, Guoying Y, Al Rowas S, Madiraju P, Antoniou J, Laverty S (2011) The constitutive expression of type x collagen in mesenchymal stem cells from osteoarthritis patients is reproduced in a rabbit model of osteoarthritis. J Tissue Eng 2011:587547. doi:21808721

    PubMed  Google Scholar 

  • Nguyen LH, Kudva AK, Saxena NS, Roy K (2011) Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials. doi:21723599

  • Noth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4(7):371–380

    PubMed  Google Scholar 

  • Pelttari K, Steck E, Richter W (2008) The use of mesenchymal stem cells for chondrogenesis. Injury 39(suppl 1 (1)):S58–S65

    Article  PubMed  Google Scholar 

  • Pelttari K, Wixmerten A, Martin I (2009) Do we really need cartilage tissue engineering? Swiss Med Wkly 139(41–42):602–609

    PubMed  CAS  Google Scholar 

  • Pevsner-Fischer M, Levin S, Zipori D (2011) The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev. doi:21437576

  • Pretzel D, Linss S, Rochler S, Endres M, Kaps C, Alsalameh S, Kinne RW (2011) Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage. Arthritis Res Ther 13(2):R64. doi:21496249

    Article  PubMed  CAS  Google Scholar 

  • Puetzer JL, Petitte JN, Loboa EG (2010) Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng Part B Rev 16(4):435–444

    Article  PubMed  CAS  Google Scholar 

  • Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Buhring HJ, Stoop R (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25(12):3244–3251

    Article  PubMed  CAS  Google Scholar 

  • Stiehler M, Friedrich H, Jacobi A, Vater C, Rauh J, Günther K-P, Bünger C (2010a) Proliferation, differentiation, and surface marker expression patterns of mesenchymal stromal cells from osteoarthritic versus healthy donors. Paper presented at the 55th Nordic Orthopaedic Federation Congress 2010, Aarhus, Denmark

    Google Scholar 

  • Stiehler M, Seib FP, Rauh J, Goedecke A, Werner C, Bornhauser M, Gunther KP, Bernstein P (2010b) Cancellous bone allograft seeded with human mesenchymal stromal cells: a potential good manufacturing practice-grade tool for the regeneration of bone defects. Cytotherapy 12(5):658–668

    Article  PubMed  CAS  Google Scholar 

  • Tallheden T, Karlsson C, Brunner A, Van Der Lee J, Hagg R, Tommasini R, Lindahl A (2004) Gene expression during redifferentiation of human articular chondrocytes. Osteoarthritis Cartilage 12(7):525–535

    Article  PubMed  Google Scholar 

  • Vater C, Kasten P, Stiehler M (2011) Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 7(2):463–477

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bernstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bernstein, P. (2012). Chondrocytes and Mesenchymal Stem Cells in Cartilage Tissue Engineering and in the Regenerative Therapy of Joint Diseases. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 5. Stem Cells and Cancer Stem Cells, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2900-1_28

Download citation

Publish with us

Policies and ethics