Skip to main content

Ionic Liquids as Lubricants

  • Chapter
  • First Online:
Green Solvents II

Abstract

This chapter reviews state-of-the-art research on ionic liquids (ILs) as lubricants. The discovery of ILs as high-performance synthetic lubricants in 2001 immediately attracted considerable attention in the field of tribology. Such lubricants have better lubrication performance and antiwear capabilities than conventional lubrication oils. This chapter first introduces a brief summary of tribology and ILs. It then details the tribological research status of ILs, including their tribological properties and functionalization. Finally, trends in future ILs research are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jost P (1966) Lubrication (tribology) – a report on the present position and industry’s needs. Department of Education and Science. Her Majesty’s Stationery Office, London

    Google Scholar 

  2. Zhou F, Liang YM, Liu WM (2009) Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev 38:2590–2599

    Article  CAS  Google Scholar 

  3. Dowson D (1998) History of tribology, 2nd edn. Professional Engineering Publishing, London

    Google Scholar 

  4. Paris WF (1935) Three thousand years of progress in the development of machinery and lubrications for the hand crafts, mill and factory 16 and 17

    Google Scholar 

  5. Olivier H (1999) Recent developments in the use of non-aqueous ionic liquids for two-phase catalysis. J Mol Catal A 146:285–289

    Article  CAS  Google Scholar 

  6. Hagiwara R, Ito Y (2000) Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J Fluor Chem 105:221–227

    Article  CAS  Google Scholar 

  7. Ye CF, Liu WM, Chen YX et al (2001) Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun 21:2244–2245

    Article  Google Scholar 

  8. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398

    Article  CAS  Google Scholar 

  9. Holbrey JD, Seddon KR (1999) Ionic liquids. Clean Prod Proc 1:223–236

    Google Scholar 

  10. Dupont J (2007) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350

    Article  Google Scholar 

  11. Padua AAH, Canongia Lopes JNA (2007) Intra- and intermolecular structure of ionic liquids: from conformers to nanostructures. In: Brenecke JF, Rogers RD, Seddon KR (eds) In ionic liquids IV. Not just solvents anymore, vol 975, ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  12. Consorti CS, Suarez PAZ, de Souza RA et al (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109:4341–4349

    Article  CAS  Google Scholar 

  13. Bermúdez MD, Jiménez AE, Sanes J et al (2009) Ionic liquids as advanced lubricant fluids. Molecules 14:2888–2908

    Article  Google Scholar 

  14. Torimoto T, Tsuda T, Okazaki K et al (2009) New frontiers in materials science opened by ionic liquids. Adv Mater 21:1–26

    Google Scholar 

  15. Holbrey JD, Seddon KR (1999) The phase behavior of 1-alkyl-3-methylimidazolium tetrafluorobprates; ionic liquids and ionic crystals. J Chem Soc Dalton Trans 13:2133–2139

    Article  Google Scholar 

  16. Anna SL, John DH, Fook ST et al (2000) Designing ionic liquids: imidazolium malts with inert carborane anions. J Amer Chem Soc 122:7264–7272

    Article  Google Scholar 

  17. Huddleston JG, Visser AE, Reichert WM et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazoliumcation. Green Chem 3:156–164

    Article  CAS  Google Scholar 

  18. Minami I, Kamimura H, Mori S (2007) Thermo-oxidative stability of ionic liquids as ­lubricating fluids. J Synth Lubr 24:135–147

    Article  CAS  Google Scholar 

  19. Minami I (2009) Ionic liquids in tribology. Molecules 14:2286–2305

    Article  CAS  Google Scholar 

  20. Jones Jr WR, Shogrin BA, Jansen MJ (2000) Research on liquid lubricants for space mechanisms. J Synth Lubr 17:109–122

    Article  Google Scholar 

  21. Liu WM, Ye CF, Gong QY et al (2002) Tribological performance of room-temperature ionic liquids as lubricant. Tribol Lett 13:81–85

    Article  CAS  Google Scholar 

  22. Wang HZ, Lu QM, Ye CF et al (2004) Friction and wear behaviors of ionic liquid of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contact. Wear 256:44–48

    Article  CAS  Google Scholar 

  23. Lu OM, Wang HZ, Ye CF et al (2004) Room temperature ionic liquid 1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide as lubricant for steel–steel contact. Tribol Int 37:547–552

    Article  CAS  Google Scholar 

  24. Weng LJ, Liu XQ, Liang YM et al (2007) Effect of tetraalkylphosphonium based ionic liquids as lubricants on the tribological performance of a steel-on-steel system. Tribol Lett 26:11–17

    Article  CAS  Google Scholar 

  25. Xia YQ, Wang SJ, Zhou F et al (2006) Tribological properties of plasma nitrided stainless steel against SAE52100 steel under ionic liquid lubrication condition. Tribol Int 39:635–640

    Article  CAS  Google Scholar 

  26. Minami I, Kita M, Kubo T et al (2008) The tribological properties of ionic liquids composed of trifluorotris (pentafluoroethyl) phosphate as a hydrophobic anion. Tribol Lett 30:215–223

    Article  CAS  Google Scholar 

  27. Phillips BS, John G, Zabinski JS (2007) Surface chemistry of fluorine containing ionic liquids on steel substrates at elevated temperature using Mossbauer spectroscopy. Tribol Lett 26:85–91

    Article  CAS  Google Scholar 

  28. Jiménez AE, Bermúdez MD, Iglesias P (2009) Lubrication of inconel 600 with ionic liquids at high temperature. Tribol Int 42:1744–1751

    Article  Google Scholar 

  29. Yao MH, Fan MJ, Liang YM et al (2010) Imidazolium hexafluorophosphate ionic liquids as high temperature lubricants for steel–steel contacts. Wear 268:67–71

    Article  CAS  Google Scholar 

  30. Murakami T, Kaneda K, Nakano M et al (2008) Tribological properties of Fe7Mo6-based alloy under two ionic liquid lubrications. Tribol Int 41:1083–1089

    Article  CAS  Google Scholar 

  31. Yu B, Zhou F, Pang CJ et al (2008) Tribological evaluation of α, ώ – diimdazoliumalkylene hexafluorophosphate ionic liquid and benzotriazole as additive. Tribol Int 41:797–801

    Article  CAS  Google Scholar 

  32. Minami I, Inada T, Sasaki R et al (2010) Tribo-chemistry of phosphonium-derived ionic liquids. Tribol Lett 40:225–235

    Article  CAS  Google Scholar 

  33. Bermúdez MD, Jiménez AE, Sanes J et al (2009) Ionic liquids as advanced lubricant fluids. Molecules 14:2888–2908

    Article  Google Scholar 

  34. Hanna HA, Shehata F (1993) Friction and wear of Al–Si alloys. Lubr Eng 49:473

    CAS  Google Scholar 

  35. Somi Reddy A, Pramila Bai BN, Murthy KS et al (1994) Wear and seizure of binary Al–Si alloys. Wear 171:115

    Article  Google Scholar 

  36. Jiménez AE, Bermúdez MD, Iglesias P et al (2006) 1-N-alkyl-3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel–aluminium contacts. Wear 260:766–782

    Article  Google Scholar 

  37. Jiménez AE, Bermúdez MD (2007) Ionic liquids as lubricants for steel–aluminum contacts at low and elevated temperatures. Tribol Lett 26:53–60

    Article  Google Scholar 

  38. Liu XQ, Zhou F, Liang YM (2006) Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear 261:1174–1179

    Article  CAS  Google Scholar 

  39. Qu J, Truhan JJ, Dai S et al (2006) Ionic liquids with ammonium cations as lubricants or additives. Tribol Lett 22:207–214

    Article  CAS  Google Scholar 

  40. Qu J, Blau PJ, Sheng D (2009) Tribological characteristics of aluminium alloys sliding against steel lubricated by ammonium and imidazolium ionic liquids. Wear 267:1226–1231

    Article  CAS  Google Scholar 

  41. Jiménez AE, Bermúdez MD et al (2009) Ionic liquids as lubricants of titanium–steel contact. Tribol Lett 33:111–126

    Article  Google Scholar 

  42. Jiménez AE, Bermúdez MD (2010) Ionic liquids as lubricants of titanium–steel contact. Part 2: friction, wear and surface interactions at high temperature. Tribol Lett 37:431–443

    Article  Google Scholar 

  43. Jiménez AE, Bermúdez MD (2010) Ionic liquids as lubricants of titanium–steel contact. Part 3.Ti6Al4V lubricated with imidazolium ionic liquids with different alkyl chain lengths. Tribol Lett 40:237–246

    Article  Google Scholar 

  44. Wakai C, Oleinikova A, Ott M (2005) How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based Ionic liquid by microwave dielectric spectroscopy. J Phys Chem B Lett 109:17028–17030

    CAS  Google Scholar 

  45. Ye CF, Liu WM, Chen YX et al (2002) Tribological behavior of Dy–sialon ceramics sliding against Si3N4 under lubrication of fluorine-containing oils. Wear 253:579–584

    Article  CAS  Google Scholar 

  46. Xia YQ, Sasaki S, Murakami T et al (2007) Ionic liquid lubrication of electrodeposited nickel–Si3N4 composite coatings. Wear 262:765–771

    Article  CAS  Google Scholar 

  47. Xia YQ, Wang LP, Liu XQ et al (2008) A comparative study on the tribological behavior of nanocrystalline nickel and coarse-grained nickel coatings under ionic liquid lubrication. Tribol Lett 30:151–157

    Article  CAS  Google Scholar 

  48. Yao MH, Liang YM, Xia YQ et al (2008) High-temperature tribological properties of 2-substituted imidazolium ionic liquids for Si3N4-steel contacts. Tribol Lett 32:73–79

    Article  CAS  Google Scholar 

  49. Xie GX, Wang Q, Si LN et al (2009) Tribological characterization of several silicon-based materials under ionic-liquids lubrication. Tribol Lett 36:247–257

    Article  CAS  Google Scholar 

  50. Sanes J, Carrión FJ, Bermúdez MD et al (2006) Ionic liquids as lubricants of polystyrene and polyamide 6-steel contacts. Preparation and properties of new polymer-ionic liquid dispersions. Tribol Lett 21:121–133

    Article  CAS  Google Scholar 

  51. Sanes J, Carrión FJ, Jiménez AE et al (2007) Influence of temperature on PA 6–steel contacts in the presence of an ionic liquid lubricant. Wear 263:658–662

    Article  CAS  Google Scholar 

  52. Nooruddin NS, Wahlbeck PG, Carper WR (2009) Semi-Empirical molecular modeling of ionic liquid tribology: ionic liquid-hydroxylated silicon surface interactions. Tribol Lett 36:147–156

    Article  CAS  Google Scholar 

  53. Suzuki A, Shinka Y, Masuko M (2007) Tribological characteristics of imidazolium-based room temperature ionic liquids under high vacuum. Tribol Lett 27:307–313

    Article  CAS  Google Scholar 

  54. Yagi T, Sasaki S, Mano H et al (2009) Lubricity and chemical reactivity of ionic liquid used for sliding metals under high-vacuum conditions. Proc IMechE J: J Eng Tribol 223:1083–1090

    Article  Google Scholar 

  55. Phillips BS, Zabinski JS (2004) Ionic liquid lubrication effects on ceramics in a water environment. Tribol Lett 17:533–541

    Article  CAS  Google Scholar 

  56. Ge LL, Chen LP, Guo R (2007) Microstructure and lubrication properties of lamellar liquid crystal in Brij30/[Bmim]PF6/H2O system. Tribol Lett 28:123–130

    Article  CAS  Google Scholar 

  57. Xie GX, Liu SH, Guo D et al (2009) Investigation of the running-in process and friction ­coefficient under the lubrication of ionic liquid/water mixture. Appl Surf Sci 255:6408–6414

    Article  CAS  Google Scholar 

  58. Jiménez AE, Bermúdez MD, Carrión FJ et al (2006) Room temperature ionic liquids as lubricant additives in steel–aluminium contacts: influence of sliding velocity, normal load and temperature. Wear 261:347–359

    Article  Google Scholar 

  59. Qu J, Truhan JJ, Dai S et al (2006) Ionic liquids with ammonium cations as lubricants or additives. Tribol Lett 22:207–214

    Article  CAS  Google Scholar 

  60. Qu J, Blau PJ, Dai S et al (2009) III. Ionic liquids as novel lubricants and additives for diesel engine applications. Tribol Lett 35:181–189

    Article  CAS  Google Scholar 

  61. Batteza AH, Gonzáleza R, Viescaa JL et al (2009) Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear 266:1224–1228

    Article  Google Scholar 

  62. Jiménez AE, Bermúdez MD (2008) Imidazolium ionic liquids as additives of the synthetic ester propylene glycol dioleate in aluminium–steel lubrication. Wear 265:787–798

    Article  Google Scholar 

  63. Yao MH, Liang YM, Xia YQ et al (2009) Bisimidazolium ionic liquids as the high-performance antiwear additives in poly(ethylene glycol) for steel-steel contacts. ACS Appl Mater Interface 1:467–471

    Article  CAS  Google Scholar 

  64. Zhang HB, Xia YQ, Yao MH et al (2009) The influences of methyl group at C2 Position in imidazolium ring on tribological properties. Tribol Lett 36:105–111

    Article  Google Scholar 

  65. Fox MF, Priest M (2008) Tribological properties of ionic liquids as lubricants and additives. Part 1: synergistic tribofilm formation between ionic liquids and tricresyl phosphate. Proc Inst Mech Eng J 222:291–303

    Article  CAS  Google Scholar 

  66. Cai MR, Zhao Z, Liang YM et al (2010) Alkyl imidazolium ionic liquids as friction reduction and anti-wear additive in polyurea grease for steel/steel contacts. Tribol Lett 40:215–224

    Article  CAS  Google Scholar 

  67. Carrión FJ, Sanes J, Bermúdez MD (2007) Effect of ionic liquid on the structure and tribological properties of polycarbonate–zinc oxide nanodispersion. Mater Lett 61:4531–4535

    Article  Google Scholar 

  68. Sanes J, Carrión FJ, Bermúdez MD (2010) Effect of the addition of room temperature ionic liquid and ZnO nanoparticles on the wear and scratch resistance of epoxy resin. Wear 268:1295–1302

    Article  CAS  Google Scholar 

  69. Chen YX, Ye CF, Wang HZ (2003) Tribological performance of an ionic liquid as a lubricant for steel/aluminium contacts. J Synth Lubr 20:217–225

    Article  CAS  Google Scholar 

  70. Liu XQ, Zhou F, Liang YM et al (2006) Benzotriazole as the additive for ionic liquid lubricant: one pathway towards actual application of ionic liquids. Tribol Lett 23:191–1965

    Article  CAS  Google Scholar 

  71. Kamimura H, Kubo T, Minami I et al (2007) Effect and mechanism of additives for ionic liquids as new lubricants. Tribol Int 40:620–625

    Article  CAS  Google Scholar 

  72. Minami I, Watanabe N, Nanao H et al (2008) Improvement in the tribological properties of imidazolium-derived ionic liquids by additive technology. J Synth Lubr 25:45–55

    Article  CAS  Google Scholar 

  73. Minami I, Watanabe N, Nanao H et al (2008) Aspartic acid-derived wear-preventing and friction-reducing agents for ionic liquids. Chem Lett 37:300–301

    Article  CAS  Google Scholar 

  74. Rühe J, Blackman G, Novoty VJ (1994) Terminal attachment of perfluorinated polymers to solid surface. J Appl Polym Sci 53:825–836

    Article  Google Scholar 

  75. Grainger DW (1997) Synthetic polymer ultrathin films for modifying surface properties. Prog Collid Polym Sci 103:243–250

    Article  CAS  Google Scholar 

  76. Nainaparampil JJ, Phillips BS, Eapen KC et al (2005) Micro-nano behaviour of DMBI-PF6 ionic liquid nanocrystals: large and small-scale interfaces. Nanotechnology 16:2474–2481

    Article  CAS  Google Scholar 

  77. Nainaparampil JJ, Eapen KC, Sanders JH et al (2007) Ionic-liquid lubrication of sliding MEMS contacts: comparison of AFM liquid cell and device-level tests. J Microelectromech Syst 16:836–843

    Article  CAS  Google Scholar 

  78. Palacio M, Bhushan B (2008) Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications. Adv Mater 20:1194–1198

    Article  CAS  Google Scholar 

  79. Patton ST, Voevodin AA, Vaia RA et al (2008) Nanoparticle liquids for surface modification and lubrication of MEMS switch contacts. J Microelectromech Syst 17:741–746

    Article  CAS  Google Scholar 

  80. Zhu M, Yan J, Mo YF et al (2008) Effect of the anion on the tribological properties of ionic liquid nano-films on surface-modified silicon wafers. Tribol Lett 29:177–183

    Article  Google Scholar 

  81. Zhu M, Mo YF, Zhao WJ (2009) Micro/macrotribological properties of several nano-scale ionic liquid films on modified silicon wafers. Surf Interface Anal 41:205–210

    Article  CAS  Google Scholar 

  82. Zhao WJ, Mo YF, Pu JB et al (2009) Effect of cation on micro/nano-tribological properties of ultra-thin ionic liquid films. Tribol Int 42:828–835

    Article  CAS  Google Scholar 

  83. Rogers RD, Seddon KR (2003) Ionic liquid-solvents of the future? Science 302:792–793

    Article  Google Scholar 

  84. Mu ZG, Zhou F, Zhang SX et al (2004) Preparation and characterization of new phosphonyl-substituted imidazolium ionic liquids. Helvetica Chim Acta 87:2549–2555

    Article  CAS  Google Scholar 

  85. Mu ZG, Liu WM, Zhang SX et al (2004) Functional room-temperature ionic liquids as lubricants for an aluminum-on-steel system. Chem Lett 33:524–525

    Article  CAS  Google Scholar 

  86. Mu ZG, Zhou F, Zhang SX et al (2005) Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact. Tribol Int 38:725–731

    Article  CAS  Google Scholar 

  87. Jin CM, Ye CF, Phillips BS et al (2006) Polyethylene glycol functionalized dicationic ionic liquids with alkyl or polyfluoroalkyl substituents as high temperature lubricants. J Mater Chem 16:1529–1535

    Article  CAS  Google Scholar 

  88. Zeng Z, Phillips BS, Xiao JC et al (2008) Polyfluoroalkyl, polyethylene glycol, 1,4-­bismethylenebenzene, or 1,4-bismethylene-2,3,5,6-tetrafluorobenzene bridged functionalized dicationic ionic liquids: synthesis and properties as high temperature lubricants. Chem Mater 20:2719–2726

    Article  CAS  Google Scholar 

  89. Li JL, Feng DP, Liang YM et al (2010) Synthesis and tribological behavior of ionic liquid substituted fluoroalkoxycyclophosphazene derivatives in steel-steel contacts. Ind Lubr Tribol 62:161–167

    Article  Google Scholar 

  90. Li JL, Zhou F, Feng DP et al (2009) Synthesis and lubrication characteristics of aryloxycyclophosphazenes substituted with imidazolium. J Tribol 131:032101–5

    Article  Google Scholar 

  91. Zhang L, Feng DP, Xu B (2009) Tribological characteristics of alkylimidazolium diethyl phosphates ionic liquids as lubricants for steel–steel contact. Tribol Lett 34:95–101

    Article  Google Scholar 

  92. Zhang L, Feng DP, Xu B et al (2009) The friction and wear characteristics and lubrication mechanism of imidazole phosphate ionic liquid. Sci China Ser E-Tech Sci 52:1191–1194

    Article  CAS  Google Scholar 

  93. Itoh T, Watanabe N, Inada K et al (2009) Design of alkyl sulfate ionic liquids for lubricants. Chem Lett 38:64–65

    Article  CAS  Google Scholar 

  94. Omotowa BA, Phillips BS, Zabinski JS et al (2004) Phosphazene-based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg Chem 43:5466–5471

    Article  CAS  Google Scholar 

  95. Yu GQ, Zhou F, Liu WM et al (2006) Preparation of functional ionic liquids and tribological investigation of their ultra-thin films. Wear 260:1076–1080

    Article  CAS  Google Scholar 

  96. Yu GQ, Yan SQ, Zhou F et al (2007) Synthesis of dicationic symmetrical and asymmetrical ionic liquids and their tribological properties as ultrathin films. Tribol Lett 25:197–205

    Article  CAS  Google Scholar 

  97. Yu B, Zhou F, Mu ZG et al (2006) Tribological properties of ultra-thin ionic liquid films on single-crystal silicon wafers with functionalized surfaces. Tribol Int 39:879–887

    Article  CAS  Google Scholar 

  98. Mo YF, Zhao WJ, Zhu M et al (2008) Nano/microtribological properties of ultrathin functionalized imidazolium wear-resistant ionic liquid films on single crystal silicon. Tribol Lett 32:143–151

    Article  CAS  Google Scholar 

  99. Jia ZF, Xia YQ, Li JL et al (2010) Friction and wear behavior of diamond-like carbon coating on plasma nitrided mild steel under boundary lubrication. Tribol Int 43:474–482

    Article  CAS  Google Scholar 

  100. Cai MR, Liang YM, Yao MH et al (2010) Imidazolium ionic liquids as antiwear and antioxidant additive in poly(ethylene glycol) for steel/steel contacts. ACS Appl Mater Interface 2:870–876

    Article  CAS  Google Scholar 

  101. Kajdas C (1994) Importance of anionic reactive intermediates for lubricant component ­reactions with friction surfaces. Lubr Sci 6:203–228

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to financial support of this work by “973” Program (2007CB607601), NSFC (50721602, 20533080), and Chinese Academy of Sciences (KJCX2.YW.H16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cai, M., Liang, Y., Zhou, F., Liu, W. (2012). Ionic Liquids as Lubricants. In: Mohammad, A., Inamuddin, D. (eds) Green Solvents II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2891-2_9

Download citation

Publish with us

Policies and ethics