Skip to main content

The Epistemic Approach: Subjectivist Interpretation

  • Chapter
  • First Online:
Probability and Social Science

Part of the book series: Methodos Series ((METH,volume 10))

  • 1235 Accesses

Abstract

The subjectivist approach permits to apply probability calculus to the greatest possible number of feelings of uncertainty, when one takes the view that it can be defined only for a specific individual and not for an event as in the objectivist one. It uses the notion of coherence in individual behavior reconciled with the notion of utility of winning. Different sets of axioms were proposed during the twentieth century for this approach the main one being given by de Finetti. Such an approach using the notion of exchangeability permits a clear answer to the problem of statistical inference. Different examples of application are then given in jurisprudence and in educational science. Finally we present some criticisms of this approach, which is too closely tied to individual psychology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Omnia, quæ sub sole sunt vel fiunt, præterita, præsentia, præsentia sive futura, in se & objectivè summam semper certitudinem habent.

  2. 2.

    Certitudo rerum, spectatata in ordine at nos, non omnium eadem is, sed multipliciter variat secundùm magis & minus. …Cætera omnia imperfectiorem ejus mensuram in mentibus nostris obtinent, majorem minoremve, prout plures vel pauciores sunt probabilitates, quæ suadent rem aliquam esse, fore aut fuisse.

  3. 3.

    Probabilitas enim is gradus certitudinis, &ab hac differt ut pars à toto.

  4. 4.

    Ita cùm qæritur in abstracto, quantò sit probabilius, juvenem vigenti annorum senem sexagenario fore superstitem, quàm verò hunc illi, præter discrimen ætatis & annorum nihil is, quod considerare possis; sed ubi specialiter sermo is de individuis Petri juvenis & Pauli senis, attendere insuper opportet ad specialem eorum complexionem & studium, quo uterque valetudinem suam curat; nam si Petrus sit valetudinarius, if infectibus indulgeat, if intepemperanter vivat, fieri potest, ut Paulus, etsi ætate provectior, optima tamen ratione longioris spem vitæ concipere valeat.

  5. 5.

    si modo haberi possunt.

  6. 6.

    si ex. gr. facto olim experimento in tercentis hominibus ejusdem, cujus nunc Titius is, ætatis & complexionis, observaveris ducentos eorum ante exactum decennium mortem oppetiisse, reliquos ultravitam protraxisse, satis tu colligere poteris, duplo plures casus esse, quibus & Titio intra decennium proximum naturae debitutm solvendum sit, quàm quibus terminium hunc transgredi possit.

  7. 7.

    This designation allows the principle to be contrasted with Leibniz’s principle of sufficient reason, which posits that for each fact there exists a sufficient reason to explain why it occurs and not another. Keynes, who was dissatisfied with the term, renamed it the indifference principle.

  8. 8.

    omnes casus æquaè possibiles esse, seu pari facilitate evenire posse;

  9. 9.

    pono in urna quadem te inscio reconditos esse ter thousand calculos albos & bis thousand nigros, teque eorum nyumerum experimentis exploraturum educere calculum unum post alternum (reponendo tamen singulis vicibus illum quem eduxisti, priusquam sequentem eligas, ne numerus calculorum in urna minuatur) & observare, quoties albus & quoties ater exeat.

  10. 10.

    binis limitibus conclusam, sed qui tam arcti constitui possunt, quam quis voluerit.

  11. 11.

    This paradox owes its name to the fact that Nicolas Bernoulli’s cousin Daniel Bernoulli ­published a paper on the problem in the Commentaires de l’Académie des Sciences de Saint-Pétersbourg in 1738.

  12. 12.

    valor non is aestimandus ex pretio rei, sed ex emolumento, quod unusquisque inde capessit. Pretium ex re ipsa aestimatur omnibusque idem is, emolumentum ex conditione personae.

  13. 13.

    Cum emolumenta singula expectata multiplicantur per numerum casuum, quibus obtinetur aggregatumque productorum dividitur per numerum omnium casuum, obtinebitur emolumentum medium, and lucrum huic emolumento respondens aequivalebit sorti quaesitae.

  14. 14.

    Bayes, in fact, seeks the more complex probability that the sought-for probability lies in an interval [b, f]. He thus obtains an integral relative to \( {\widehat{p}}_{n}\), between b and f, of the equation below divided by 2.

  15. 15.

    A number of authors (Pearson 1920; Fisher 1956; Hacking 1965) have not properly understood this hypothesis advanced by Bayes; they believe that it consists of Laplace’s principle of insufficient reason, which we shall examine later. Laplace’s principle states that, when no information exists, it is the unknown probability that we must regard as uniformly distributed. In this case, we would also be unaware of any monotonic function of the unknown probability, which would yield different results (see Stigler (1986) for a fuller discussion of this hypothesis).

  16. 16.

    Interestingly, Laplace does not seem to have been aware of Bayes’s work at that date, for the introduction to his paper (written by Condorcet) does not mention Bayes. By contrast, 4 years later (1778), Laplace’s introduction by Condorcet quotes Bayes and Price, who published his results in the Philosophical Transactions.

  17. 17.

    This hypothesis is therefore different from Bayes’s hypothesis, namely, that it is the number of trials leading to the event that is regarded as uniformly distributed and not its probability. Many authors criticized Laplace’s hypothesis (Edgeworth 1885a; Fisher 1922a, 1956), arguing that other monotonic distributions of p, for example \( {\scriptscriptstyle \frac{1}{2}}Arc\mathrm{cos}(1-2p)\), could be equally suitable and yield different results. We shall discuss the hypothesis in greater detail at the end of the chapter.

  18. 18.

    In his 1937 article, de Finetti used the term ‘equivalent events’, but the designation was not kept in later publications dealing with the concept. Today, the term ‘exchangeable events’ is used in all of the literature, even though some authors do not regard it as perfect.

  19. 19.

    In fact, this notion predates Dempster’s work. It was notably formulated by Good (1962), Cedrik Smith (1961, 1965), and Fishburn (1964).

  20. 20.

    Actually, de Finetti noted this event \( \frac{{E}^{\prime }}{{E}^{″}}\), but we shall use standard probability notations here.

  21. 21.

    Allais won the Nobel Prize for Economics in 1988 for his contributions to market theory.

  22. 22.

    The notion of semi-order rests on the idea that one alternative is preferable to another only if the utility of the first alternative exceeds the utility of the second by a certain constant threshold.

  23. 23.

    Smets (1990) formulated these axioms slightly differently, calling the belief function bel:

    1. 1.

      compositionality axiom: \( be{l}_{12}(A)\) is a function of A, \( be{l}_{1}and\ be{l}_{2}\) only.

    2. 2.

      symmetry: \( be{l}_{1}\oplus \ be{l}_{2}=be{l}_{2}\oplus \ be{l}_{1}\).

    3. 3.

      associativity: \( \left(be{l}_{1}\oplus \ be{l}_{2}\right)\oplus \ be{l}_{3}=be{l}_{1}\oplus \ (be{l}_{2}\oplus \ be{l}_{3})\).

    4. 4.

      conditioning: if \( be{l}_{2}\) is such that \( {m}_{2}(B)=1\), then

      $$\begin{array}{l}{m}_{12}(A)={\displaystyle \sum _{C\to \overline{B}}{m}_{1}(A\cup C)}for\ all\ A\to B\\ =0\ otherwise\end{array}$$
    5. 5.

      internal symmetry : the mass given by \( {m}_{12}\) to \( A\in W\) is independent of the masses given by \( {m}_{1}\) (and \( {m}_{2}\) to propositions \( B\to \overline{A}\).

    6. 6.

      auto functionality: \( \forall A\in \Omega,\ A\ne {1}_{\Omega },\text{m}_{12}(A)\) does not depend on \( {m}_{1}(X)\) for all \( X\to \overline{A}\).

    7. 7.

      three elements: there are at least three elementary propositions in \(D\).

    8. 8.

      continuity: let \( {m}_{2}(A)=1-\epsilon,\text{m}_{2}\left({1}_{\Omega }\right)=\epsilon \). Let \( {m}_{A}(A)=1\). For any \( be{l}_{1}\) defined on Ω, let \( be{l}_{1A}=be{l}_{1}\oplus \ be{l}_{A}\) then for all \( X\in \Omega \), \( \underset{\epsilon \to 0}{\mathrm{lim}}{m}_{12}(X)={m}_{1A}(X)\).

  24. 24.

    We have taken the objectivist model here, as the population observed is large. However, as noted earlier, the results with the subjectivist model would be very similar.

  25. 25.

    Apart from Allais’s criticisms discussed above, we could, of course, have quoted many examples in economics making extensive use of subjective probability. Some of these examples are reported in the next section on issues raised by subjective analysis.

  26. 26.

    Kahneman won the Nobel Prize for Economics in 2002 for this theory.

References

  • Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école américaine. Econometrica, 21(4), 503–546.

    Google Scholar 

  • Andersen, P. K., Borgan, Ø., Gill, R. D., & Keiding, N. (1993). Statistical models based on counting processes. New York/Berlin/Heidelberg: Springer.

    Google Scholar 

  • Arnauld, A., & Nicole, P. (1662). La logique ou l’Art de penser. Paris: Chez Charles Savreux.

    Google Scholar 

  • Ayton, P. (1997). How to be incoherent and seductive: Bookmaker’s odds and support theory. Organizational Behavior and Human Decision Processes, 72, 99–115.

    Google Scholar 

  • Bayes, T. R. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370–418.

    Google Scholar 

  • Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory. Chichester: Wiley.

    Google Scholar 

  • Bernoulli, J. I. (1713). Ars conjectandi. Bâle: Impensis Thurnisiorum fratrum.

    Google Scholar 

  • Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, V, 175–192.

    Google Scholar 

  • Bernoulli, J.I., & Leibniz, G.W. (1692–1704). Lettres échangées. (French translation by Meusnier N. (2006). Quelques échanges ? Journal électronique d’Histoire des Probabilités et de la Statistique, 2(1), 1–12).

    Google Scholar 

  • Bienaymé, J. (1838). Mémoire sur la probabilité des résultats moyens des observations; démonstration directe de la règle de Laplace. Mémoires Présentés à l’Académie Royale des Sciences de l’Institut de France, 5, 513–558.

    Google Scholar 

  • Boole, G. (1854). An investigation of the laws of thought: On which are founded the mathematical theories of logic and probability. London: Walton and Maberly.

    Google Scholar 

  • Browne, W. J. (1998). Applying MCMC methods to multi-level models. PhD thesis, University of Bath, Bath citeseerx.ist.edu: http://www.ams.ucsc.edu/~draper/browne-PhD-dissert. Accessed July 10, 2011.

  • Choquet, G. (1953). Theory of capacities. Annales de l’Institut Fourier, 5, 131–296.

    Google Scholar 

  • Chung, K.-L. (1942). On mutually favourable events. The Annals of Statistics, 13, 338–349.

    Google Scholar 

  • Cohen, M. R., & Nagel, E. (1934). An introduction to logic and scientific method. NewYork: Harcourt Brace.

    Google Scholar 

  • Condorcet. (1778). Sur les probabilités. Histoire de l’Académie Royale de Sciences, 1781, 43–46.

    Google Scholar 

  • Courgeau, D. (2002). Evolution ou révolutions dans la pensée démographique? Mathématiques et Sciences Humaines, 40(160), 49–76.

    Google Scholar 

  • Courgeau, D. (2004b). Probabilités, démographie et sciences sociales. Mathématiques et Sciences Humaines, 42(3), 5–19.

    Google Scholar 

  • Courgeau, D. (2007a). Multilevel synthesis. From the group to the individual. Dordrecht: Springer.

    Google Scholar 

  • Courgeau, D. (2007b). Inférence statistique, échangeabilité et approche multiniveau. Mathématiques et Sciences Humaines, 45(179), 5–19.

    Google Scholar 

  • Courgeau, D., & Lelièvre, E. (1989). Analyse démographique des biographies. Paris: Ined (English translation: (1992). Event history analysis in demography. Oxford: Clarendon Press. Spanish translation: (2001). Análisis demográfico de las biografías. México: El Colegio de México).

    Google Scholar 

  • Cox, R. (1961). The algebra of probable inference. Baltimore: The John Hopkins Press.

    Google Scholar 

  • Cox, D. R., & Oakes, D. (1984). Analysis of survival data. London/New York: Chapman and Hall.

    Google Scholar 

  • de Finetti, B. (1931a). Sul significato soggettivo della probabilità. Fundamenta Mathematicae, 17, 298–329.

    Google Scholar 

  • de Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré, 7, 1–68 (Paris).

    Google Scholar 

  • de Finetti, B. (1951). Recent suggestions for the reconciliation of theories of probability. In J. Neyman (Ed.), Proceedings of the second Berkeley symposium on mathematical statistics and probability (pp. 217–225). Berkeley: University of California Press.

    Google Scholar 

  • de Finetti, B. (1952). Sulla preferibilità. Giornale degli Economisti e Annali de Economia, 11, 685–709.

    Google Scholar 

  • de Montmort, P. R. (1713). Essay d’analyse sur les jeux de hazard (2nd ed.). Paris: Jacques Quillau.

    Google Scholar 

  • DeGroot, M. H. (1970). Optimal statistical decision. New York: McGraw-Hill.

    Google Scholar 

  • Dempster, A. P. (1967). Upper and lower probabilities induced by a multilevel mapping. Annals of Mathematical Statistics, 38, 325–339.

    Google Scholar 

  • Dempster, A. P. (1968). A generalization of Bayesian inference. Journal of the Royal Statistical Society, Series B, 30, 205–245.

    Google Scholar 

  • Dubois, D., & Prade, H. (1988). An introduction to possibilistic and fuzzy logics. In P. Smets, A. Mandani, D. Dubois, & H. Prade (Eds.), Non standard logics for automated reasoning (pp. 287–326). New York: Academic Press.

    Google Scholar 

  • Ellis, R. L. (1849). On the Foundations of the theory of probability. Transactions of the Cambridge Philosophical Society, VIII, 1–16.

    Google Scholar 

  • Eriksson, L., & Hájek, A. (2007). What are degrees of belief? Studia Logica, 86, 185–215.

    Google Scholar 

  • Fishburn, P. C. (1964). Decision and value theory. New York: Wiley.

    Google Scholar 

  • Fishburn, P. C. (1975). A theory of subjective probability and expected utilities. Theory and Decision, 6, 287–310.

    Google Scholar 

  • Fishburn, P. C. (1986). The axioms of subjective probability. Statistical Science, 1(3), 335–345.

    Google Scholar 

  • Fisher, R. A. (1922a). The mathematical theory of probability. London: Macmillan.

    Google Scholar 

  • Fisher, R. A. (1956). Statistical methods and scientific inference. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Freund, J. E. (1965). Puzzle or paradox? The American Statistician, 19(4), 29–44.

    Google Scholar 

  • Frischhoff, B., Slovic, B., & Lichteinstein, S. (1978). Fault trees: Sensitivity of estimated failure probabilities to problem representation. Journal of Experimental Psychology. Human Perception and Performance, 4, 330–344.

    Google Scholar 

  • Gacôgne, L. (1993). About a foundation of the Dempster’s rule. (Rapport 93/27). Laforia.

    Google Scholar 

  • Gärdenfors, P., Hansson, B., & Sahlin, N.-E. (Eds.). (1983). Evidential value: Philosophical, judicial and psychological aspects of a theory. Lund: Gleerups.

    Google Scholar 

  • Gelman, A., Karlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. New York: Chapman and Hall.

    Google Scholar 

  • Gill, J. (2008). Bayesian methods. A social and behavioral sciences approach. Boca Raton: Chapman & Hall.

    Google Scholar 

  • Gillies, D. (2000). Philosophical theories of probability. London/New York: Routledge.

    Google Scholar 

  • Goldstein, H. (2003). Multilevel statistical models. London: Edward Arnold.

    Google Scholar 

  • Good, I. J. (1962). Subjective probability as the measure of a non-measurable set. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and philosophy of science (pp. 319–329). Stanford: Stanford University Press.

    Google Scholar 

  • Grether, D. M., & Plott, C. R. (1979). Economic theory of choice and the preference reversal phenomenon. The American Economic Review, 69(4), 623–638.

    Google Scholar 

  • Hacking, I. (1965). Logic of statistical inference. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hájek, A. (2008a). Dutch book arguments. In P. Anand, P. Pattanaik, & C. Pup (Eds.), The Oxford handbook of corporate social responsibility, Phil papers: http://philrsss.anu.edu.au/people-defaults/alanh/papers/DBA.pdf. Accessed July 10, 2011.

  • Hájek, A. (2008b). Probability. In B. Gold (Ed.), Current issues in the philosophy of mathematics: From the perspective of mathematicians, Mathematical Association of America, Phil papers. http://philrsss.anu.edu.au/people-defaults/alanh/papers/overview.pdf. Accessed July 10, 2011.

  • Hooper, G. (1699). A calculation of the credibility of human testimony. Anonymous translation in Philosophical Transactions of the Royal Society, 21, 359–365.

    Google Scholar 

  • Ibrahim, J. G., Chen, M.-H., & Sinha, D. (2001). Bayesian survival analysis. New York/Berlin/Heidelberg: Springer.

    Google Scholar 

  • Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jeffreys, H. (1939). Theory of probability. New York: Clarendon Press.

    Google Scholar 

  • Johnson, W. E. (1932). Probability: The deductive and inductive problem. Mind, 41, 409–423.

    Google Scholar 

  • Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgement of representativeness. Cognitive Psychology, 3, 430–454.

    Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.

    Google Scholar 

  • Kalbfleisch, J. D., & Prentice, R. L. (1980). The statistical analysis of failure time data. New York/Chichester/Brisbane/Toronto: Wiley.

    Google Scholar 

  • Kaplan, M. (1996). Decision theory as philosophy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Keynes, J. M. (1921). A treatise on probability. London: Macmillan.

    Google Scholar 

  • Kolmogorov, A. (1933). Grundbegriffe der wahrscheinlichkeitsrenung. In Ergebisne der Mathematik, (Vol. 2) Berlin: Springer (English translation, Morrison, N. (1950). Foundations of the theory of probability New York: Chelsea).

    Google Scholar 

  • Kraft, C. H., Pratt, J. W., & Seidenberg, A. (1959). Intuitive probability on finite sets. Annals of Mathematical Statistics, 30, 408–419.

    Google Scholar 

  • Kyburg, H. (1978). Subjective probability: Criticisms, reflections and problems. Journal of Philosophical Logic, 7, 157–180.

    Google Scholar 

  • Lambert, J. H. (1764). Neues Organon oder gedanken über die Erforschung und Bezeichnung des wahren und dessen underscheidung von irrthum und schein. Leipzig: Johan Wendler.

    Google Scholar 

  • Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les événements. Mémoires de l’Académie Royale des Sciences de Paris, Tome VI, 621–656.

    Google Scholar 

  • Laplace, P. S. (1783a). Mémoire sur les approximations des formules qui sont fonctions de très-grands nombres (suite). Mémoires de l’Académie Royale des sciences de Paris, 1786, 423–467.

    Google Scholar 

  • Laplace, P. S. (1812). Théorie analytique des Probabilités (Vols. 2). Paris: Courcier Imprimeur.

    Google Scholar 

  • Laplace, P. S. (1814). Essai philosophique sur les probabilités. Paris: Courcier Imprimeur.

    Google Scholar 

  • Lee, P. M. (1989). Bayesian statistics. London: Arnold.

    Google Scholar 

  • Leonard, T., & Hsu, S. J. (1999). Bayesian methods. An analysis for statisticians and interdisciplinary researchers. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lindley, D. V., & Novick, M. R. (1981). The role of exchangeability in inference. The Annals of Statistics, 9, 45–58.

    Google Scholar 

  • Loomes, G., & Sugden, R. (1982). Regret theory: An alternative theory of rational choice under uncertainty. The Economic Journal, 92, 805–824.

    Google Scholar 

  • Luce, R. D., & Krantz, D. H. (1971). Conditional expected utility. Econometrica, 39(2), 253–271.

    Google Scholar 

  • Luce, R. D., & Suppes, P. (1965). Preference, utility and subjective probability. In R. D. Luce, R. R. Bush, & E. H. Galanter (Eds.), Handbook of mathematical psychology (Vol. 3, pp. 249–410). New York: Wiley.

    Google Scholar 

  • Machina, M. J. (1982). “Expected utility” analysis without the independence axiom. Econometrica, 50(2), 277–323.

    Google Scholar 

  • Mandel, D. R. (2005). Are risk assessments of a terrorist attack coherent? Journal of Experimental Psychology Applied, 11, 277–288.

    Google Scholar 

  • Mandel, D. R. (2008). Violations of coherence in subjective probability: A representational and assessment processes account. Cognition, 106, 130–156.

    Google Scholar 

  • Matalon, B. (1967). Epistémologie des probabilités. In J. Piaget (Ed.), Logique et connaissance scientifique (pp. 526–553). Paris: Gallimard.

    Google Scholar 

  • McCrimmon, K., & Larson, S. (1979). Utility theory: Axioms versus “paradoxes”. In M. Allais & O. Hagen (Eds.), Expected utility hypotheses and the Allais paradox (pp. 333–409). Dordrecht: D. Reidel.

    Google Scholar 

  • Morrison, D. (1967). On the consistency of preferences in Allais’s paradox. Behavioral Science, 12, 373–383.

    Google Scholar 

  • Muliere, P., & Parmigiani, G. (1993). Utility and means in the 1930s. Statistical Science, 8(4), 421–432.

    Google Scholar 

  • Narens, L. (1976). Utility, uncertainty and trade-off structures. Journal of Mathematical Psychology, 13, 296–332.

    Google Scholar 

  • Pascal, B. (1670). Pensées. Paris: Édition de Port-Royal.

    Google Scholar 

  • Pearson, K. (1920). The fundamental problem of practical statistics. Biometrika, 13(1), 1–16.

    Google Scholar 

  • Pearson, K. (1925). Bayes’ theorem, examined in the light of experimental sampling. Biometrika, 17(3/4), 388–442.

    Google Scholar 

  • Piaget, J. (1967). Les deux problèmes principaux de l’épistémologie des sciences de l’homme. In J. Piaget (Ed.), Logique et connaissance Scientifique (pp. 1114–1146). Paris: Gallimard.

    Google Scholar 

  • Poisson, S.-D. (1837). Recherches sur la probabilité des jugements en matière criminelle et en matière civile. Paris: Bachelier.

    Google Scholar 

  • Preston, M. G., & Baratta, P. (1948). An experimental study of the auction value of an uncertain outcome. The American Journal of Psychology, 61, 183–193.

    Google Scholar 

  • Ramsey, F. P. (1926). Truth and probability. In Ramsey, F.P. (1931), The foundations of mathematics and other logical essays, R.B. Braithwaite ed, Ch. VII, pp. 156–198. London: Kegan, Trubner & Co., New York: Harcourt, Brace and Company.

    Google Scholar 

  • Ramsey, F. P. (1931). In R. B. Braithwaite (Ed.), The foundations of mathematics and other logical essays. London/New York: Kegan, Trubner & Co/Harcourt, Brace and Company.

    Google Scholar 

  • Robert, C. P. (2006). Le choix bayésien. Paris: Springer-Verlag France.

    Google Scholar 

  • Roberts, H. V. (1974). Reporting of Bayesian studies. In S. E. Fienberg & A. Zellner (Eds.), Studies in Bayesian econometrics and statistics: In honor of Leonard J. Savage (pp. 465–483). Amsterdam: North Holland.

    Google Scholar 

  • Rouanet, H., Bernard, J.-M., Bert, M.-C., Lecoutre, B., Lecoutre, M.-P., & Le Roux, B. (1998). New ways in statistical methodology. From significance tests to Bayesian inference. Bern: Peter Lang.

    Google Scholar 

  • Rouanet, H., Lebaron, F., Le Hay, V., Ackermann, W., & Le Roux, B. (2002). Régression et analyse géométrique des données: réflexions et suggestions. Mathématiques et Sciences Humaines, 160, 13–45.

    Google Scholar 

  • Savage, L. J. (1954). The foundations of statistics. New York: Wiley.

    Google Scholar 

  • Scott, D. (1964). Measurement structures and linear inequalities. Journal of Mathematical Psychology, 1, 233–247.

    Google Scholar 

  • Seidenfeld, T., Schervish, M. J., & Kadane, J. B. (1990). When fair betting odds are not degrees of belief. Philosophical Science Association, 1, 517–524.

    Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press.

    Google Scholar 

  • Shafer, G. (1979). Allocations of probability. Annals of Probability, 7(5), 827–839.

    Google Scholar 

  • Shafer, G. (1985). Conditional probability. International Statistical Review, 53(3), 261–277.

    Google Scholar 

  • Shafer, G. (1986). Savage revisited. Statistical Science, 1(4), 463–501.

    Google Scholar 

  • Shafer, G. (2001). The notion of event in probability and causality. Situating myself relative to Bruno de Finetti. Unpublished paper, presented in Pisa and in Bologna march 2001, 14 p.

    Google Scholar 

  • Shafer, G., Gilett, P. R., & Scherl, R. B. (2000). The logic of events. Annals of Mathematics and Artificial Intelligence, 28, 315–389.

    Google Scholar 

  • Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society Series B, 13, 238–241.

    Google Scholar 

  • Smets, P. (1988). Belief functions. In P. Smets, A. Mandani, P. Dubois, & H. Prade (Eds.), Non standard logics for automated reasoning (pp. 253–286). London: Academic Press.

    Google Scholar 

  • Smets, P. (1990). Constructing pignistic probability function in a context of uncertainty. In M. Henrion, R. D. Shachter, L. N. Kanal, & J. F. Lemmer (Eds.), Uncertainty in artificial intelligence (Vol. 5, pp. 29–40). Amsterdam: North Holland.

    Google Scholar 

  • Smets, P. (1991). Probability of provability and belief functions. Logique et Analyse, 133–134, 177–195.

    Google Scholar 

  • Smets, P. (1994). What is Dempster-Shafer’s model? In R. R. Yager, M. Fedrizzi, & J. Kacprzyk (Eds.), Advances in the Dempster-Shafer theory of evidence (pp. 5–34). New York/Chichester/Brisbane/Toronto: Wiley.

    Google Scholar 

  • Smets, P. (1997). The normative representation of quantified beliefs by belief functions. Artificial Intelligence, 92, 229–242.

    Google Scholar 

  • Smets, P. (1998). The transferable belief model for quantified belief representation. In P. Smets (Ed.), Handbook of defeasible reasoning and uncertainty management systems, Vol. 1: Quantified representation of uncertainty & imprecision (pp. 267–301). Dordrecht: Kluwer.

    Google Scholar 

  • Smith, C. A. B. (1961). Consistency in statistical inference and decision, (with discussion). Journal of the Royal Statistical Society Series B, 23, 1–25.

    Google Scholar 

  • Smith, C. A. B. (1965). Personal probability and statistical analysis, (with discussion). Journal of the Royal Statistical Society Series A, 128, 469–499.

    Google Scholar 

  • Starmer, C. (1992). Testing new theories of choice under uncertainty using the common consequence effect. Review of Economic Studies, 59(4), 813–830.

    Google Scholar 

  • Starmer, C. (2000). Developments in non expected-utility theory: The hunt for a descriptive theory of choice under risk. Journal of Economic Literature, 38(2), 332–382.

    Google Scholar 

  • Stigler, S. M. (1986). The history of statistics: the measurement of uncertainty before 1900. Cambridge: Belknap Press of Harvard University Press.

    Google Scholar 

  • Stigum, B. P. (1972). Finite state space and expected utility maximization. Econometrica, 40, 253–259.

    Google Scholar 

  • Suppes, P. (1956). The role of subjective probability and utility in decision-making. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955(5), 61–73.

    Google Scholar 

  • Suppes, P. (1960). Some open problems in the foundations of subjective probability. In R. E. Machol (Ed.), Information and decision processes (pp. 129–143). New York: McGraw-Hill.

    Google Scholar 

  • Suppes, P. (1974). The measurement of belief. Journal of the Royal Statistical Society Series B (Methodological), 36(2), 160–191.

    Google Scholar 

  • Suppes, P. (1976). Testing theories and the foundations of statistics. In W. L. Harper & C. A. Hooker (Eds.), Foundations of probability theory, statistical inference, and statistical theories of science (Vol. II, pp. 437–457). Dordrecht: Reidel.

    Google Scholar 

  • Suppes, P. (2002a). Representation and invariance of scientific structures. Stanford: CSLI Publications.

    Google Scholar 

  • Suppes, P., & Zanotti, M. (1975). Necessary and sufficient conditions for existence of a unique measure strictly agreeing with a qualitative probability ordering. Journal of Philosophical Logic, 5, 431–438.

    Google Scholar 

  • Suppes, P., & Zanotti, M. (1982). Necessary and sufficient qualitative axioms for conditional probability. Zeitschrift für Wahrscheinlichkeitstheorie und Werwande Gebiete, 60, 163–169.

    Google Scholar 

  • Tversky, A. (1974). Assessing uncertainty. Journal of the Royal Statistical Society Series B (Methodological), 36(2), 148–159.

    Google Scholar 

  • Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(30), 453–457.

    Google Scholar 

  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.

    Google Scholar 

  • Tversky, A., & Koeler, D. J. (1994). Support theory: A nonextensional representation of subjective probability. Psychological Review, 101, 547–567.

    Google Scholar 

  • Venn, J. (1866). The logic of chance. London: Macmillan.

    Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behaviour. Princeton: Princeton University Press.

    Google Scholar 

  • Weber, M. (1998). The resilience of the Allais paradox. Ethics, 109(1), 94–118.

    Google Scholar 

  • Weber, B. (2007). The effects of losses and event splitting on the Allais paradox. Judgment and Decision Making, 2, 115–125.

    Google Scholar 

  • Yager, R. R., & Liu, L. (Eds.). (2007). Classic works on the Dempster-Shafer theory of belief functions. Heidelberg: Springer.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Google Scholar 

  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Courgeau, D. (2012). The Epistemic Approach: Subjectivist Interpretation. In: Probability and Social Science. Methodos Series, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2879-0_2

Download citation

Publish with us

Policies and ethics