Skip to main content

Mitochondria and Heart Disease

  • Chapter
  • First Online:
Advances in Mitochondrial Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 942))

Abstract

Mitochondria play a key role in the normal functioning of the heart, and in the pathogenesis and development of various types of heart disease. Physiologically, mitochondrial ATP supply needs to be matched to the often sudden changes in ATP demand of the heart, and this is mediated to a large extent by the mitochondrial Ca2+ transport pathways allowing elevation of mitochondrial [Ca2+] ([Ca2+]m). In turn this activates dehydrogenase enzymes to increase NADH and hence ATP supply. Pathologically, [Ca2+]m is also important in generation of reactive oxygen species, and in opening of the mitochondrial permeability transition pore (MPTP); factors involved in both ischaemia-reperfusion injury and in heart failure. The MPTP has proved a promising target for protective strategies, with inhibitors widely used to show cardioprotection in experimental, and very recently human, studies. Similarly mitochondrially-targeted antioxidants have proved protective in various animal models of disease and await clinical trials. The mitochondrial Ca2+ transport pathways, although in theory promising therapeutic targets, cannot yet be targeted in human studies due to non-specific effects of drugs used experimentally to inhibit them. Finally, specific mitochondrial cardiomyopathies due to mutations in mtDNA have been identified, usually in a gene for a tRNA, which, although rare, are almost always very severe once the mutation has exceeded its threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

mCU:

Mitochondrial calcium uniporter

mNCX:

Mitochondrial sodium calcium exchanger

MPTP:

Mitochondrial permeability transition pore

ROS:

Reactive oxygen species

RuR:

Ruthenium red

References

  • Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP et al (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19(9):1088–1095

    PubMed  CAS  Google Scholar 

  • Allen SP, Darley-Usmar VM, McCormack JG, Stone D (1993) Changes in mitochondrial matrix free calcium in perfused rat hearts subjected to hypoxia-reoxygenation. J Mol Cell Cardiol 25(8):949–958

    PubMed  CAS  Google Scholar 

  • Aon MA, Cortassa S, Maack C, O’Rourke B (2007) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 282(30):21889–21900

    PubMed  CAS  Google Scholar 

  • Ardehali H, O’Rourke B (2005) Mitochondrial K(ATP) channels in cell survival and death. J Mol Cell Cardiol 39(1):7–16

    PubMed  CAS  Google Scholar 

  • Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111(2):194–197

    PubMed  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662

    PubMed  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555

    PubMed  CAS  Google Scholar 

  • Balaban RS (2009) The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim Biophys Acta 1787(11):1334–1341

    PubMed  CAS  Google Scholar 

  • Bell CJ, Bright NA, Rutter GA, Griffiths EJ (2006) ATP regulation in adult rat cardiomyocytes: time-resolved decoding of rapid mitochondrial calcium spiking imaged with targeted photoproteins. J Biol Chem 281(38):28058–28067

    PubMed  CAS  Google Scholar 

  • Benzi RH, Lerch R (1992) Dissociation between contractile function and oxidative metabolism in postischemic myocardium. Attenuation by ruthenium red administered during reperfusion. Circ Res 71(3):567–576

    PubMed  CAS  Google Scholar 

  • Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451(7181):943–948

    PubMed  CAS  Google Scholar 

  • Bush LR, Shlafer M, Haack DW, Lucchesi BR (1980) Time-dependent changes in canine cardiac mitochondrial function and ultrastructure resulting from coronary occlusion and reperfusion. Basic Res Cardiol 75(4):555–571

    PubMed  CAS  Google Scholar 

  • Carry MM, Mrak RE, Murphy ML, Peng CF, Straub KD, Fody EP (1989) Reperfusion injury in ischemic myocardium: protective effects of ruthenium red and of nitroprusside. Am J Cardiovasc Pathol 2(4):335–344

    PubMed  CAS  Google Scholar 

  • Chacon E, Reece JM, Nieminen AL, Zahrebelski G, Herman B, Lemasters JJ (1994) Distribution of electrical potential, pH, free Ca2+, and volume inside cultured adult rabbit cardiac myocytes during chemical hypoxia: a multiparameter digitized confocal microscopic study. Biophys J 66(4):942–952

    PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1956) Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 221(1):477–489

    PubMed  CAS  Google Scholar 

  • Chen J, Hattori Y, Nakajima K, Eizawa T, Ehara T, Koyama M et al (2006) Mitochondrial complex I activity is significantly decreased in a patient with maternally inherited type 2 diabetes mellitus and hypertrophic cardiomyopathy associated with mitochondrial DNA C3310T mutation: a cybrid study. Diabetes Res Clin Pract 74(2):148–153

    PubMed  CAS  Google Scholar 

  • Clarke B, Spedding M, Patmore L, McCormack JG (1993) Protective effects of ranolazine in guinea-pig hearts during low-flow ischaemia and their association with increases in active pyruvate dehydrogenase. Br J Pharmacol 109(3):748–750

    PubMed  CAS  Google Scholar 

  • Clarke SJ, Khaliulin I, Das M, Parker JE, Heesom KJ, Halestrap AP (2008) Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res 102(9):1082–1090

    PubMed  CAS  Google Scholar 

  • Claypool SM, Boontheung P, McCaffery JM, Loo JA, Koehler CM (2008) The cardiolipin transacylase, tafazzin, associates with two distinct respiratory components providing insight into Barth syndrome. Mol Biol Cell 19(12):5143–5155

    PubMed  CAS  Google Scholar 

  • Cleland JG, Khand A, Clark A (2001) The heart failure epidemic: exactly how big is it? Eur Heart J 22(8):623–626

    PubMed  CAS  Google Scholar 

  • Crestanello JA, Doliba NM, Babsky AM, Doliba NM, Niibori K, Osbakken MD et al (2000) Opening of potassium channels protects mitochondrial function from calcium overload. J Surg Res 94(2):116–123

    PubMed  CAS  Google Scholar 

  • Crompton M, Costi A (1990) A heart mitochondrial Ca2(+)-dependent pore of possible relevance to re-perfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states. Biochem J 266(1):33–39

    PubMed  CAS  Google Scholar 

  • Crompton M, Costi A, Hayat L (1987) Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J 245(3):915–918

    PubMed  CAS  Google Scholar 

  • Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255(1):357–360

    PubMed  CAS  Google Scholar 

  • de Jesus GRG, Guerrero-Hernandez A, Guerrero-Serna G, Rodriguez-Zavala JS, Zazueta C (2005) Inhibition of the mitochondrial calcium uniporter by the oxo-bridged dinuclear ruthenium amine complex (Ru360) prevents from irreversible injury in postischemic rat heart. FEBS J 272(13):3477–3488

    Google Scholar 

  • Dedkova EN, Blatter LA (2008) Mitochondrial Ca2+ and the heart. Cell Calcium 44(1):77–91

    PubMed  CAS  Google Scholar 

  • Delcamp TJ, Dales C, Ralenkotter L, Cole PS, Hadley RW (1998) Intramitochondrial [Ca2+] and membrane potential in ventricular myocytes exposed to anoxia-reoxygenation. Am J Physiol 275(2 Pt 2):H484–H494

    PubMed  CAS  Google Scholar 

  • Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316

    PubMed  CAS  Google Scholar 

  • Denton RM, McCormack JG, Edgell NJ (1980) Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J 190(1):107–117

    PubMed  CAS  Google Scholar 

  • Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70(2):191–199

    PubMed  Google Scholar 

  • Di Lisa F, Fan CZ, Gambassi G, Hogue BA, Kudryashova I, Hansford RG (1993) Altered pyruvate dehydrogenase control and mitochondrial free Ca2+ in hearts of cardiomyopathic hamsters. Am J Physiol 264(6 Pt 2):H2188–H2197

    PubMed  Google Scholar 

  • Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD et al (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486(Pt 1):1–13

    PubMed  Google Scholar 

  • Figueredo VM, Dresdner KP Jr, Wolney AC, Keller AM (1991) Postischaemic reperfusion injury in the isolated rat heart: effect of ruthenium red. Cardiovasc Res 25(4):337–342

    PubMed  CAS  Google Scholar 

  • Fleckenstein A, Frey M, Fleckenstein-Grun G (1983) Consequences of uncontrolled calcium entry and its prevention with calcium antagonists. Eur Heart J 4(Suppl H):43–50

    PubMed  CAS  Google Scholar 

  • Fosslien E (2003) Review: mitochondrial medicine–cardiomyopathy caused by defective oxidative phosphorylation. Ann Clin Lab Sci 33(4):371–395

    PubMed  CAS  Google Scholar 

  • Goldstein JD, Shanske S, Bruno C, Perszyk AA (1999) Maternally inherited mitochondrial cardiomyopathy associated with a C-to-T transition at nucleotide 3303 of mitochondrial DNA in the tRNA(Leu(UUR)) gene. Pediatr Dev Pathol 2(1):78–85

    PubMed  CAS  Google Scholar 

  • Gomez L, Thibault H, Gharib A, Dumont JM, Vuagniaux G, Scalfaro P et al (2007) Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am J Physiol Heart Circ Physiol 293(3):H1654–H1661

    PubMed  CAS  Google Scholar 

  • Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM et al (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54(2):322–328

    PubMed  CAS  Google Scholar 

  • Griffiths EJ (1999) Reversal of mitochondrial Na/Ca exchange during metabolic inhibition in rat cardiomyocytes. FEBS Lett 453(3):400–404

    PubMed  CAS  Google Scholar 

  • Griffiths EJ (2000) Use of ruthenium red as an inhibitor of mitochondrial Ca(2+) uptake in single rat cardiomyocytes. FEBS Lett 486(3):257–260

    PubMed  CAS  Google Scholar 

  • Griffiths EJ (2009) Mitochondrial calcium transport in the heart: physiological and pathological roles. J Mol Cell Cardiol 46(6):789–803

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1993) Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25(12):1461–1469

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–98

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Wei SK, Haigney MC, Ocampo CJ, Stern MD, Silverman HS (1997) Inhibition of mitochondrial calcium efflux by clonazepam in intact single rat cardiomyocytes and effects on NADH production. Cell Calcium 21(4):321–329

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford RG, Stern MD et al (1998) Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovasc Res 39(2):423–433

    PubMed  CAS  Google Scholar 

  • Grover GJ, Dzwonczyk S, Sleph PG (1990) Ruthenium red improves postischemic contractile function in isolated rat hearts. J Cardiovasc Pharmacol 16(5):783–789

    PubMed  CAS  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258(5 Pt 1):C755–C786

    PubMed  CAS  Google Scholar 

  • Gursahani HI, Schaefer S (2004) Acidification reduces mitochondrial calcium uptake in rat cardiac mitochondria. Am J Physiol Heart Circ Physiol 287(6):H2659–H2665

    PubMed  CAS  Google Scholar 

  • Haigney MC, Lakatta EG, Stern MD, Silverman HS (1994) Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation 90(1):391–399

    PubMed  CAS  Google Scholar 

  • Hajnóczky G, Csordás G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S et al (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40(5-6):553–560

    PubMed  Google Scholar 

  • Halestrap AP (1991) Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J 278(Pt 3):715–719

    PubMed  CAS  Google Scholar 

  • Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787(11):1402–1415

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta – Bioenergetics 1767(8):1007–1031

    CAS  Google Scholar 

  • Harris DA, Das AM (1991) Control of mitochondrial ATP synthesis in the heart. Biochem J 280(Pt 3):561–573

    PubMed  CAS  Google Scholar 

  • Hauff KD, Hatch GM (2006) Cardiolipin metabolism and Barth syndrome. Prog Lipid Res 45(2):91–101

    PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 116(2):173–191

    PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 60(3):617–625

    PubMed  CAS  Google Scholar 

  • Hausenloy D, Wynne A, Duchen M, Yellon D (2004a) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109(14):1714–1717

    PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR (2004b) Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 287(2):H841–H849

    PubMed  CAS  Google Scholar 

  • Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195(2):460–467

    PubMed  CAS  Google Scholar 

  • He L, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512(1–3):1–7

    PubMed  CAS  Google Scholar 

  • Heineman FW, Balaban RS (1993) Effects of afterload and heart rate on NAD(P)H redox state in the isolated rabbit heart. Am J Physiol Heart Circ Physiol 264(2):H433–H440

    CAS  Google Scholar 

  • Hill MF, Palace VP, Kaur K, Kumar D, Khaper N, Singal PK (2005) Reduction in oxidative stress and modulation of heart failure subsequent to myocardial infarction in rats. Exp Clin Cardiol 10(3):146–153

    PubMed  CAS  Google Scholar 

  • Holme E, Greter J, Jacobson CE, Larsson NG, Lindstedt S, Nilsson KO et al (1992) Mitochondrial ATP-synthase deficiency in a child with 3-methylglutaconic aciduria. Pediatr Res 32(6):731–735

    PubMed  CAS  Google Scholar 

  • Hughes SE, McKenna WJ (2005) New insights into the pathology of inherited cardiomyopathy. Heart 91(2):257–264

    PubMed  Google Scholar 

  • Hunter DR, Haworth RA (1979a) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195(2):453–459

    PubMed  CAS  Google Scholar 

  • Hunter DR, Haworth RA (1979b) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195(2):468–477

    PubMed  CAS  Google Scholar 

  • Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251(16):5069–5077

    PubMed  CAS  Google Scholar 

  • Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K et al (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86(2):152–157

    PubMed  CAS  Google Scholar 

  • Ikeuchi M, Matsusaka H, Kang D, Matsushima S, Ide T, Kubota T et al (2005) Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112(5):683–690

    PubMed  CAS  Google Scholar 

  • James AM, Cocheme HM, Smith RA, Murphy MP (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280(22):21295–21312

    PubMed  CAS  Google Scholar 

  • Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549(Pt 2):513–524

    PubMed  CAS  Google Scholar 

  • Javadov S, Karmazyn M, Escobales N (2009) Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther 330(3):670–678

    PubMed  CAS  Google Scholar 

  • Kanzaki Y, Terasaki F, Okabe M, Otsuka K, Katashima T, Fujita S et al (2010) Giant mitochondria in the myocardium of a patient with mitochondrial cardiomyopathy: transmission and 3-dimensional scanning electron microscopy. Circulation 121(6):831–832

    PubMed  Google Scholar 

  • Katz LA, Koretsky AP, Balaban RS (1987) Respiratory control in the glucose perfused heart. A 31P NMR and NADH fluorescence study. FEBS Lett 221(2):270–276

    PubMed  CAS  Google Scholar 

  • Katz LA, Swain JA, Portman MA, Balaban RS (1989) Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol 256(1 Pt 2):H265–H274

    PubMed  CAS  Google Scholar 

  • Kerr PM, Suleiman MS, Halestrap AP (1999) Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol 276(2 Pt 2):H496–H502

    PubMed  CAS  Google Scholar 

  • Khouri EM, Gregg DE, Rayford CR (1965) Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ Res 17(5):427–437

    PubMed  CAS  Google Scholar 

  • Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M et al (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121(14):1606–1613

    PubMed  CAS  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427(6973):461–465

    PubMed  CAS  Google Scholar 

  • Lawrence CL, Billups B, Rodrigo GC, Standen NB (2001) The KATP channel opener diazoxide protects cardiac myocytes during metabolic inhibition without causing mitochondrial depolarization or flavoprotein oxidation. Br J Pharmacol 134(3):535–542

    PubMed  CAS  Google Scholar 

  • Lee B, Miles PD, Vargas L, Luan P, Glasco S, Kushnareva Y et al (2003) Inhibition of mitochondrial Na+-Ca2+ exchanger increases mitochondrial metabolism and potentiates glucose-stimulated insulin secretion in rat pancreatic islets. Diabetes 52(4):965–973

    PubMed  CAS  Google Scholar 

  • Leperre A, Millart H, Prevost A, Trenque T, Kantelip JP, Keppler BK (1995) Compared effects of ruthenium red and cis [Ru(NH3)4Cl2]Cl on the isolated ischaemic-reperfused rat heart. Fundam Clin Pharmacol 9(6):545–553

    PubMed  CAS  Google Scholar 

  • Leung AW, Halestrap AP (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta 1777(7–8):946–952

    PubMed  CAS  Google Scholar 

  • Leung AW, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283(39):26312–26323

    PubMed  CAS  Google Scholar 

  • Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11(4):376–381

    PubMed  CAS  Google Scholar 

  • Lim SY, Davidson SM, Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res 75(3):530–535

    PubMed  CAS  Google Scholar 

  • Lin L, Sharma VK, Sheu SS (2007) Mechanisms of reduced mitochondrial Ca2+ accumulation in failing hamster heart. Pflugers Arch 454(3):395–402

    PubMed  CAS  Google Scholar 

  • Liu T, O’Rourke B (2008) Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res 103(3):279–288

    PubMed  CAS  Google Scholar 

  • Ludman AJ, Yellon DM, Hausenloy DJ (2010) Cardiac preconditioning for ischaemia: lost in translation. Dis Model Mech 3(1–2):35–38

    PubMed  Google Scholar 

  • Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102(5):369–392

    PubMed  CAS  Google Scholar 

  • Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B (2006) Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res 99(2):172–182

    PubMed  CAS  Google Scholar 

  • Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A (1998) Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97(16):1536–1539

    PubMed  CAS  Google Scholar 

  • Marcus FI (2000) Electrocardiographic features of inherited diseases that predispose to the development of cardiac arrhythmias, long QT syndrome, arrhythmogenic right ventricular cardiomyopathy/dysplasia, and Brugada syndrome. J Electrocardiol 33(Suppl):1–10

    PubMed  Google Scholar 

  • Marian AJ, Salek L, Lutucuta S (2001) Molecular genetics and pathogenesis of hypertrophic cardiomyopathy. Minerva Med 92(6):435–451

    PubMed  CAS  Google Scholar 

  • Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52(1):103–110

    PubMed  CAS  Google Scholar 

  • Marin-Garcia J, Goldenthal MJ, Damle S, Pi Y, Moe GW (2009) Regional distribution of mitochondrial dysfunction and apoptotic remodeling in pacing-induced heart failure. J Card Fail 15(8):700–708

    PubMed  CAS  Google Scholar 

  • McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70(2):391–425

    PubMed  CAS  Google Scholar 

  • Mewton N, Croisille P, Gahide G, Rioufol G, Bonnefoy E, Sanchez I et al (2010) Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol 55(12):1200–1205

    PubMed  CAS  Google Scholar 

  • Miyamae M, Camacho SA, Weiner MW, Figueredo VM (1996) Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol Heart Circ Physiol 271(5):H2145–H2153

    CAS  Google Scholar 

  • Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res 71(3):605–613

    PubMed  CAS  Google Scholar 

  • Moe GW, Armstrong P (1999) Pacing-induced heart failure: a model to study the mechanism of disease progression and novel therapy in heart failure. Cardiovasc Res 42(3):591–599

    PubMed  CAS  Google Scholar 

  • Murata M, Akao M, O’Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89(10):891–898

    PubMed  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    PubMed  CAS  Google Scholar 

  • Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    PubMed  CAS  Google Scholar 

  • Murphy E, Steenbergen C (2008a) Ion transport and energetics during cell death and protection. Physiology (Bethesda) 23:115–123

    CAS  Google Scholar 

  • Murphy E, Steenbergen C (2008b) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88(2):581–609

    PubMed  CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434(7033):652–658

    PubMed  CAS  Google Scholar 

  • Naviaux RK (2000) Mitochondrial DNA disorders. Eur J Pediatr 159(Suppl 3):S219–S226

    PubMed  CAS  Google Scholar 

  • Nazareth W, Yafei N, Crompton M (1991) Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23(12):1351–1354

    PubMed  CAS  Google Scholar 

  • Neely JR, Denton RM, England PJ, Randle PJ (1972) The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J 128(1):147–159

    PubMed  CAS  Google Scholar 

  • Nemer M (2008) Genetic insights into normal and abnormal heart development. Cardiovasc Pathol 17(1):48–54

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Crompton M (1980) Mitochondrial calcium transport. FEBS Lett 111(2):261–268

    PubMed  CAS  Google Scholar 

  • Panagiotopoulos S, Daly MJ, Nayler WG (1990) Effect of acidosis and alkalosis on postischemic Ca gain in isolated rat heart. Am J Physiol Heart Circ Physiol 258(3):H821–H828

    CAS  Google Scholar 

  • Park Y, Bowles DK, Kehrer JP (1990) Protection against hypoxic injury in isolated-perfused rat heart by ruthenium red. J Pharmacol Exp Ther 253(2):628–635

    PubMed  CAS  Google Scholar 

  • Peng CF, Kane JJ, Straub KD, Murphy ML (1980) Improvement of mitochondrial energy production in ischemic myocardium by in vivo infusion of ruthenium red. J Cardiovasc Pharmacol 2(1):45–54

    PubMed  CAS  Google Scholar 

  • Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27(50):6407–6418

    PubMed  CAS  Google Scholar 

  • Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359(5):473–481

    PubMed  CAS  Google Scholar 

  • Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12(5):815–833

    PubMed  CAS  Google Scholar 

  • Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F et al (2001) Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J 20(17):4998–5007

    PubMed  CAS  Google Scholar 

  • Roy SS, Hajnóczky G (2008) Calcium, mitochondria and apoptosis studied by fluorescence measurements. Methods 46(3):213–223

    PubMed  CAS  Google Scholar 

  • Schwartz A, Lee KS (1962) Study of heart mitochondria and glycolytic metabolism in experimentally induced cardiac failure. Circ Res 10:321–332

    PubMed  CAS  Google Scholar 

  • Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93(8):903–907

    PubMed  CAS  Google Scholar 

  • Servidei S, Bertini E, DiMauro S (1994) Hereditary metabolic cardiomyopathies. Adv Pediatr 41:1–32

    PubMed  CAS  Google Scholar 

  • Sharikabad MN, Ostbye KM, Brors O (2004) Effect of hydrogen peroxide on reoxygenation-induced Ca2+ accumulation in rat cardiomyocytes. Free Radic Biol Med 37(4):531–538

    PubMed  CAS  Google Scholar 

  • Shiomi T, Tsutsui H, Matsusaka H, Murakami K, Hayashidani S, Ikeuchi M et al (2004) Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 109(4):544–549

    PubMed  CAS  Google Scholar 

  • Silverman HS, Stern MD (1994) Ionic basis of ischaemic cardiac injury: insights from cellular studies. Cardiovasc Res 28(5):581–597

    PubMed  CAS  Google Scholar 

  • Smart N, Mojet MH, Latchman DS, Marber MS, Duchen MR, Heads RJ (2006) IL-6 induces PI 3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes. Cardiovasc Res 69(1):164–177

    PubMed  CAS  Google Scholar 

  • Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, vandeVen M et al (2004) Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Renal Physiol 286(4):F784–F794

    PubMed  CAS  Google Scholar 

  • Sordahl LA, Stewart ML (1980) Mechanism(s) of altered mitochondrial calcium transport in acutely ischemic canine hearts. Circ Res 47(6):814–820

    PubMed  CAS  Google Scholar 

  • Sordahl LA, McCollum WB, Wood WG, Schwartz A (1973) Mitochondria and sarcoplasmic reticulum function in cardiac hypertrophy and failure. Am J Physiol 224(3):497–502

    PubMed  CAS  Google Scholar 

  • Stone D, Darley-Usmar V, Smith DR, O’Leary V (1989) Hypoxia-reoxygenation induced increase in cellular Ca2+ in myocytes and perfused hearts: the role of mitochondria. J Mol Cell Cardiol 21(10):963–973

    PubMed  CAS  Google Scholar 

  • Suleiman MS, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Ther 89(1):29–46

    PubMed  CAS  Google Scholar 

  • Supinski GS, Murphy MP, Callahan LA (2009) MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 297(4):R1095–R1102

    PubMed  CAS  Google Scholar 

  • Takeo S, Tanonaka K, Iwai T, Motegi K, Hirota Y (2004) Preservation of mitochondrial function during ischemia as a possible mechanism for cardioprotection of diltiazem against ischemia/reperfusion injury. Biochem Pharmacol 67(3):565–574

    PubMed  CAS  Google Scholar 

  • Terasaki F, Tanaka M, Kawamura K, Kanzaki Y, Okabe M, Hayashi T et al (2001) A case of cardiomyopathy showing progression from the hypertrophic to the dilated form: association of Mt8348A–>G mutation in the mitochondrial tRNA(Lys) gene with severe ultrastructural alterations of mitochondria in cardiomyocytes. Jpn Circ J 65(7):691–694

    PubMed  CAS  Google Scholar 

  • Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G et al (2008) Long-term benefit of postconditioning. Circulation 117(8):1037–1044

    PubMed  CAS  Google Scholar 

  • Towbin JA, Bowles NE (2002) The failing heart. Nature 415(6868):227–233

    PubMed  CAS  Google Scholar 

  • Tsutsui H, Kinugawa S, Matsushima S (2008) Oxidative stress and mitochondrial DNA damage in heart failure. Circ J 72(Suppl A):A31–A37

    PubMed  Google Scholar 

  • Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81(3):449–456

    PubMed  CAS  Google Scholar 

  • Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797(2):113–128

    PubMed  CAS  Google Scholar 

  • van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67(1):21–29

    PubMed  Google Scholar 

  • Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21(1):133–137

    PubMed  CAS  Google Scholar 

  • Wang L, Cherednichenko G, Hernandez L, Halow J, Camacho SA, Figueredo V et al (2001) Preconditioning limits mitochondrial Ca2+ during ischemia in rat hearts: role of KATP channels. Am J Physiol Heart Circ Physiol 280(5):H2321–H2328

    PubMed  CAS  Google Scholar 

  • White RL, Wittenberg BA (1993) NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply. Biophys J 65(1):196–204

    PubMed  CAS  Google Scholar 

  • Wikman-Coffelt J, Sievers R, Parmley WW, Jasmin G (1986) Cardiomyopathic and healthy acidotic hamster hearts: mitochondrial activity may regulate cardiac performance. Cardiovasc Res 20(7):471–481

    PubMed  CAS  Google Scholar 

  • Winniford MD, Willerson JT, Hillis LD (1985) Calcium antagonists for acute ischemic heart disease. Am J Cardiol 55(3):116B–124B

    PubMed  CAS  Google Scholar 

  • Zhang SZ, Gao Q, Cao CM, Bruce IC, Xia Q (2006) Involvement of the mitochondrial calcium uniporter in cardioprotection by ischemic preconditioning. Life Sci 78(7):738–745

    PubMed  CAS  Google Scholar 

  • Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA et al (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579–H588

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elinor J. Griffiths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Griffiths, E.J. (2012). Mitochondria and Heart Disease. In: Scatena, R., Bottoni, P., Giardina, B. (eds) Advances in Mitochondrial Medicine. Advances in Experimental Medicine and Biology, vol 942. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2869-1_11

Download citation

Publish with us

Policies and ethics