Skip to main content

Features of the Sterilization by VUV/UV Irradiation of Low-Pressure Discharge Plasma

  • Conference paper
  • First Online:
Plasma for Bio-Decontamination, Medicine and Food Security

Abstract

The review is devoted to peculiarities of sterilization of items by VUV/UV ­radiation of the discharge plasma both in case of the items immersed into the ­discharge plasma (“direct plasma” treatment), and in case of flowing afterglow plasma (“remote plasma” treatment). The issues of influence of such factors as UV irradiation spectrum, substrate temperature on the UV sterilization efficiency are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menashi WP (1968) Treatment of surfaces. US Patent 3,383,163

    Google Scholar 

  2. Ashman LE, Menashi WP (1972) Treatment of surfaces with low-pressure plasmas. US Patent 3,701,628

    Google Scholar 

  3. Fraser SJ, Giletter RB, Olson RL (1974) Sterilization and packaging process utilizing gas plasma. US Patent 3,851,436

    Google Scholar 

  4. Tensmeyer LG (1976) Method of killing microorganisms in the inside of container utilizing a laser beam induced plasma. US Patent 3,955,921

    Google Scholar 

  5. Bithell RM (1982) Package and sterilizing process for same. US Patent 4,321,232

    Google Scholar 

  6. Gut Boucher RM (1982) Seeded gas plasma sterilization method. US Patent 4,207,286

    Google Scholar 

  7. Jacobs PT, Lin S-M (1987) Hydrogen peroxide plasma sterilization system. US Patent 4,643,876

    Google Scholar 

  8. Jacobs A (1989) Process and apparatus for dry sterilization of medical devices and materials. US Patent 4,801,427

    Google Scholar 

  9. Campbell BA, Moulton A (1992) Plasma sterilizer and method. US Patent 5,115,166

    Google Scholar 

  10. Campbell BA (1993) Circular waveguide plasma microwave sterilizer apparatus. US Patent 5,184,046

    Google Scholar 

  11. Soloshenko IA, Tsiolko VV, Khomich VA, Bazhenov VYu, Ryabtsev AV, Schedrin AI, Mikhno IL (2002) Features of the sterilization using low-pressure DC discharge hydrogen peroxide plasma. IEEE Trans Plasma Sci 30:1440–1444

    Article  ADS  Google Scholar 

  12. Cerf O (1977) Tailing of survival curves of bacterial spores. J Appl Bacteriol 42:1–19

    Article  Google Scholar 

  13. Ruiz P, Ocio MJ, Cardona F, Fernández A, Rodrigo M, Martínez A (2002) Nature of the ­inactivation curves of Bacillus Pumilus spores heated using non-isothermal and isothermal treatments. J Food Sci 67:776–779

    Article  Google Scholar 

  14. Moisan M, Barbeau J, Crevier M-C, Pelletier J, Philip N, Saoudi B (2002) Plasma sterilization. Methods and mechanisms. Pure Appl Chem 74:349–358

    Article  Google Scholar 

  15. Raballand V, Benedikt J, Wunderlich J, von Keudell A (2008) Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms. J Phys D Appl Phys 41:115207 (8pp)

    Article  Google Scholar 

  16. Khomich AV, Soloshenko IA, Tsiolko VV, Mikhno IL (1997) Cold sterilization of medical devices and materials by plasma DC glow discharge. In: Proceedings of the 12th international conference on gas discharges and their applications, vol 2, Greifswald, pp 740–744

    Google Scholar 

  17. Khomich VA, Soloshenko IA, Tsiolko VV, Mikhno IL (1998) Investigation of principal factors of the sterilization by plasma DC glow discharge. In: Proceedings of the international congress on plasma physics, Prague, pp 2745–2748

    Google Scholar 

  18. Soloshenko IA, Khomich VA, Tsiolko VV, Mikhno IL, Shchedrin AI, Ryabtsev AV, Bazhenov V Yu (1999) Experimental and theoretical investigation of cold sterilization of medical instruments by plasma DC glow discharge. In: Proceedings of the 14th international symposium on plasma chemistry, vol 5, Prague, pp 2551–2556

    Google Scholar 

  19. Soloshenko IA, Tsiolko VV, Khomich VA, Shchedrin AI, Ryabtsev AV, Bazhenov VYu, Mikhno IL (2000) Sterilization of medical products in low-pressure glow discharge. Plasma Phys Rep 26:792–800

    Article  ADS  Google Scholar 

  20. Inagaki T, Hamm RN, Arakawa ET, Painter LR (1974) Optical and dielectric properties of DNA in extreme ultraviolet. J Chem Phys 61:4246–4250

    Article  ADS  Google Scholar 

  21. Munakata N, Saito M, Hiera K (1991) Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50–300 nm) obtained with synchrotron radiation. Photochem Photobiol 54:761–768

    Article  Google Scholar 

  22. Giese N, Darby J (2000) Sensitivity of microorganisms to different wavelengths of UV light: implications on modeling of medium pressure UV systems. Water Res 34:4007–4013

    Article  Google Scholar 

  23. Bolton JR, Linden KG (2003) Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J Environ Eng 129:209–215

    Article  Google Scholar 

  24. Moreau S, Tabrizian M, Barbeau J, Moisan M, Leduc A, Pelletier J, Lagarde T, Rohr M, Desor F, Vidal D, Ricard A, Yahia L’H (1999) Optimum operating conditions leading to complete sterilization at low substrate temperature in a plasma flowing afterglow. In: Proceedings of the 12 international colloquium plasma processes, Antibes, France

    Google Scholar 

  25. Moisan M, Barbeau J, Pelletier J, Philip N, Saudi B (2001) Plasma sterilization: mechanism, potential and shortcomings. In: Proceedings of the 13th international colloquium plasma ­processes, Antibes, France

    Google Scholar 

  26. Moreau S, Moisan M, Tabrizian M, Barbeau J, Pelletier J, Ricard A, L’H Y (2000) Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: influence of the operating conditions. J Appl Phys 88:1166–1174

    Article  ADS  Google Scholar 

  27. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, L’H Y (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21

    Article  Google Scholar 

  28. Philip N, Saoudi B, Crevier M-C, Moisan M, Barbeau J, Pelletier J (2002) The respective roles of UV photons and oxygen atoms in plasma sterilization at reduced gas pressure: the case of N2–O2 mixtures. IEEE Trans Plasma Sci 30:1429–1436

    Article  ADS  Google Scholar 

  29. Pintassilgo CD, Kutasi K, Loureiro J (2007) Modeling of a low-pressure N2–O2 discharge and post-discharge reactor for plasma sterilization. Plasma Sources Sci Technol 16:S115–S122

    Article  ADS  Google Scholar 

  30. Feichtinger J, Schulz A, Walker M, Schumacher U (2003) Sterilization with low-pressure microwave plasmas. Surf CoatTechnol 174–175:564–569

    Article  Google Scholar 

  31. Halfmann H, Denis B, Bibinov N, Wunderlich J, Awakowicz P (2007) A double inductively coupled plasma for sterilization of medical devices. J Phys D Appl Phys 40:4145–4154

    Article  ADS  Google Scholar 

  32. Halfmann H, Denis B, Bibinov N, Wunderlich J, Awakowicz P (2007) Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores. J Phys D Appl Phys 40:5907–5911.25

    Article  ADS  Google Scholar 

  33. Pollak J, Moisan M, K’eroack D, Boudam MK (2008) Low-temperature low-damage sterilization based on UV radiation through plasma immersion. J Phys D Appl Phys 41:135212 (14pp)

    Article  ADS  Google Scholar 

  34. Soloshenko IA, Bazhenov VY, Khomich VA, Tsiolko VV, Potapchenko NG (2006) Comparative research of efficiency of water decontamination by UV radiation of cold hollow cathode discharge plasma versus that of low- and medium-pressure mercury lamps. IEEE Trans Plasma Sci 34:1365–1369

    Article  ADS  Google Scholar 

  35. Soloshenko IA, Bazhenov VY, Khomich VA, Tsiolko VV, Potapchenko NG, Goncharuk VV (2006) Utilization of ultraviolet radiation of cold hollow cathode discharge plasma for water disinfection. Ukr J Phys 51:1063–1070

    Google Scholar 

  36. Hury S, Vidal DR, Desor F, Pelletier J, Lagarde T (1998) A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen-based plasmas. Lett Appl Microbiol 26:417–421

    Article  Google Scholar 

  37. Boudam MK, Moisan M (2010) Synergy effect of heat and UV photons on bacterial-spore inactivation in an N2–O2 plasma-afterglow sterilizer. J Phys D Appl Phys 43:295202 (17pp)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to offer thanks to Dr. V. Yu. Bazhenov for helpful discussions and assistance, Dr. Z. Machala for the encouragement and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav V. Tsiolko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Tsiolko, V.V. (2012). Features of the Sterilization by VUV/UV Irradiation of Low-Pressure Discharge Plasma. In: Machala, Z., Hensel, K., Akishev, Y. (eds) Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2852-3_18

Download citation

Publish with us

Policies and ethics