Skip to main content

First Problem Area: Coherence of Basic Assumptions and Concepts

  • Chapter
  • First Online:
System Theory in Geomorphology

Part of the book series: Springer Theses ((Springer Theses))

  • 901 Accesses

Abstract

The term ‘system’ is largely accepted as interpretation pattern within geomorphology, which is reflected in the amount of publications within which system theory serves as theoretical reference point. A search within the ISI Web of Science points to a strong increase of geomorphological system theoretical research within the 1990s and the first decade of the twenty first century (This search does not claim completeness and only serves as an indicator for a development. Furthermore, only those articles were captured that utilize “system” within title, abstract, or keywords). From 1960 to 1989 the amount of publications that referred to “geomorph” and “system” (The search algorithm was ‘geomorph*’ AND ‘systems’, and for the determination of the reference frame ‘geomorph’, respectively.) was only 28 of 903 (<5%). Within the following decades, however, system-theoretical studies showed an increase in numbers: approx. one-third of all geomorphological papers showed reference to systems in some form [27% (971 of 3,656) of the publications within the 1990s and 31% (2,205 of 7,044) from 2000 to 2009]. Although the reliability of these numbers is limited and, consequently, they are not supposed to stimulate any further analyses, it can be shown on a random basis that the theoretical foundation as well as the definitions and basic assumptions are rarely, if at all, reflected and analysed. This can be seen as an indication that systems are seen as given and ‘natural’ or obvious.

The beginning of wisdom is the definition of terms.

Socrates

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This search does not claim completeness and only serves as an indicator for a development. Furthermore, only those articles were captured that utilize “system” within title, abstract, or keywords.

  2. 2.

    The search algorithm was ‘geomorph*’ AND ‘system’, and for the determination of the reference frame ‘geomorph’, respectively.

  3. 3.

    The term “implicit theory” stems from psychology where it is understood as individual constructions by single persons of specific phenomena [13, 14]. This concept shows some similarities to the concept of “crypto theories”, which has been coined by Peter Weichhart within (German) human geography and which has its roots within literary studies (cf. [15]).

  4. 4.

    At the same time, this seems to be a good example forthe double ontological non-sequitur (doppelter ontologischer Kurzschluss) mentioned by Hard.

  5. 5.

    With Fuchs [38] I will call this the exculpation function (“Entschuldigungsfunktion”) of first order system theories.

  6. 6.

    In their early works, Maturana and Varela [55] describe living systems as machines. This was indeed meant as provocation and especially as alternative approach to animistic tendencies (also cf. [56] and Chap. 1). Other authors also describe living systems as machines (cf. [57]).

  7. 7.

    Maturana [53] call those systems that do not reproduce themselves by their own operations but something different, and which thus do not set their own boundaries allopoietic. An allopoietic system is a product of another, system-external process, and as it thus has to be defined by an external observer, it is a purely analytical construct [58]. Maturana [53] state that autopoietic systems can be equally studied allopoietically, that is, with regard to their input–output-relations. However, this point of view limits the degree of potential insights on the inner organisation. It is the combined approach that leads to a recognition of the system’s relations to its environment (also cf. [56] and [58]).

  8. 8.

    The process structure that enables autopoiesis consists of the processes of interaction, production, transformation, and destruction [64].

References

  1. Dikau R (2005) Geomorphologische Perspektiven integrativer Forschungsansätze in Physischer Geographie und Humangeographie. In: Wardenga U, Müller-Mahn D (eds) Möglichkeiten und Grenzen integrativer Forschungsansätze in Physischer Geographie und Humangeographie. Forum ifl. Leibniz-Institut für Länderkunde, Leipzig, pp 91–108

    Google Scholar 

  2. Cox NJ (2007) Kinds and problems of geomorphological explanation. Geomorphology 88(1–2):46–56

    Article  Google Scholar 

  3. Bak P (1996) How nature works. The science of self-organised criticality. Copernicus Press, New York, p 212

    Google Scholar 

  4. Hergarten S (2003) Landslides, sandpiles, and self-orgnaized criticality. Nat Hazard Earth Syst Sci 3(3):505–514

    Article  Google Scholar 

  5. Keiler M (2011) Geomorphology and complexity—inseparably connected? Zeitschrift für Geomorphologie 55(3):233–257

    Article  Google Scholar 

  6. Phillips JD (1992) The end of equilibrium? Geomorphology 5(3–5):195–201

    Article  Google Scholar 

  7. Phillips JD (1992) Nonlinear dynamical systems in geomorphology revolution or evolution? Geomorphology 5:219–229

    Article  Google Scholar 

  8. Phillips JD (2003) Sources of nonlinearity and complexity in geomorphic systems. Prog Phys Geogr 27(1):1–23

    Article  Google Scholar 

  9. Phillips JD (2006) Deterministic chaos and historical geomorphology: a review and look forward. Geomorphology 76:109–121

    Article  Google Scholar 

  10. Phillips JD (2006) Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change. Hydrol Earth Syst Sci 10:731–742

    Article  Google Scholar 

  11. Schumm SA (1991) To interpret the earth. Ten ways to be wrong. Cambridg University Press, Cambridge

    Google Scholar 

  12. Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  13. Sternberg RJ, Conway BE, Ketron JL, Bernstein M (1981) People's conceptions of intelligence. J Pers Soc Psychol 41(1):37–55

    Article  Google Scholar 

  14. Furnham A (1988) Lay theories. Everyday understanding of problems in social sciences. Pergamon Press, New York

    Google Scholar 

  15. Eibl K (1976) Kritisch-rationale Literaturwissenschaft. Grundlagen zur erklärenden Literaturgeschichte. München

    Google Scholar 

  16. Egner H, Elverfeldt K von (2009) A bridge over troubled waters? Systems theory and dialogue in geography. Area 41(3):319–328

    Article  Google Scholar 

  17. Scheidegger AE (1992) Limitations of the system approach in geomorphology. Geomorphology 5:213–217

    Article  Google Scholar 

  18. von Elverfeldt K, Keiler M (2008) Offene Systeme und ihre Umwelt—Systemperspektiven in der Geomorphologie. In: Egner H, Ratter BMW, Dikau R (eds) Umwelt als System—System als Umwelt? Systemtheorien auf dem Prüfstand. Oekom, München, pp 75–102

    Google Scholar 

  19. von Elverfeldt K, Glade T (2011) Systems theory in geomorphology. A challenge. Zeitschrift für Geomorphologie 55(3):87–108

    Article  Google Scholar 

  20. Seiffert H, Radnitzky G (ed) (1994) Handlexikon zur Wissenschaftstheorie. dtv Wissenschaft, München, p 502

    Google Scholar 

  21. Mayhew S, Penny A (eds) (1992) The concise Oxford Dictionary of Geography. Comprehensive coverage in one volume of both human and physical geography. Oxford Reference, Oxford

    Google Scholar 

  22. Brunotte E, Gebhardt H, Meurer M, Meusburger P, Nipper J (eds) (2002) Lexikon der Geographie. In vier Bänden, Heidelberg, Berlin

    Google Scholar 

  23. Chorley RJ, Kennedy BA (1971) Physical geography—a systems approach. London

    Google Scholar 

  24. Howard AD (1965) Geomorphological systems–equilibrium and dynamics. Am J Sci 263(4):302–312

    Article  Google Scholar 

  25. Bull WB (1991) Geomorphic responses to climatic change. Oxford University Press, Oxford, p 326

    Google Scholar 

  26. Huggett RJ (2003) Fundamentals of geomorphology. Routledge, London, p 336

    Google Scholar 

  27. Bailey KD (2007) Boundary maintenance in living systems theory and social entropy theory. In: The 51st annual meeting of the international society for the systems sciences. Integrated Systems Sciences: Systems Thinking, Modeling and Practice, Tokyo, pp 1–15

    Google Scholar 

  28. Baker VR, Pyne S (1978) G. K. Gilbert and modern geomorphology. Am J Sci 278:97–123

    Article  Google Scholar 

  29. Honig JM (1999) Thermodynamics

    Google Scholar 

  30. White ID, Mottershead DN, Harrison SJ (1992) Environmental systems. Stanley Thornes (Publishers) Ltd, Cheltenham, p 616

    Google Scholar 

  31. Kennedy BA (1979) A naughty world. Trans Inst Br Geog 4(4):550–558

    Article  Google Scholar 

  32. Werner BT, McNamara DE (2007) Dynamics of coupled human-landscape systems. Geomorphology 91:393–407

    Article  Google Scholar 

  33. Christopherson RW (2006) Geosystems: An introduction to physical geography, p 689

    Google Scholar 

  34. Foerster H von (2006) Sicht und Einsicht. Versuche zu einer operativen Erkenntnistheorie. Carl-Auer, Heidelberg, p 233

    Google Scholar 

  35. Moran MJ, Shapiro HN (1992) Fundamentals of engineering thermodynamics. Wiley, New York

    Google Scholar 

  36. Thorn CE, Welford MR (1994) The equilibrium concept in geomorphology. Ann Assoc Am Geogr 84(4):666–696

    Article  Google Scholar 

  37. Sattelmayer T (2009) Thermodynamik I: Grundkonzepte und Definitionen. Available at http://www.td.mw.tum.de/tum-td/de/lehre/thermo_1/download/D-folien/B-Handout-Kapitel2.pdf. Accessed on 27 Nov 2009

  38. Fuchs P (1992) Niklas Luhmann–beobachtet. Eine Einführung in die Systemtheorie. Westdeutscher Verlag, Opladen, p 219

    Google Scholar 

  39. Dubrovsky V (2004) Toward system principles: general system theory and the alternative approach. Syst Res Behav Sci 21:109–122

    Article  Google Scholar 

  40. Larses O, Elkhoury J (2005) Views on general systems theory. TRITA-MMK: 2005:10, Mechatronics Lab, Department of Machine Design, Royal Institute of Technology, KTH, Stockholm

    Google Scholar 

  41. Prigogine I, Stengers I (1990) Entwicklung und Irreversibilität. In: Niedersen U, Pohlmann L (ed) Selbstorganisation und Determination. Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften. Duncker and Humblot, Berlin, pp 3–18

    Google Scholar 

  42. Spencer-Brown G (1996) Wahrscheinlichkeit und Wissenschaft. Carl Auer, Heidelberg, p 142

    Google Scholar 

  43. Chalmers AF (2001) Wege der Wissenschaft. Einführung in die Wissenschaftstheorie. Springer, Heidelberg, p 236

    Google Scholar 

  44. Schneider ED, Sagan D (2005) Into the cool. Energy flow, thermodynamics, and life. The University of Chicago Press, Chicago and London, p 362

    Google Scholar 

  45. Luhmann N (1986) Ökologische Kommunikation–Kann die moderne Gesellschaft sich auf ökologische Gefährdungen einstellen? Westdeutscher Verlag, Opladen, p 275

    Google Scholar 

  46. Foerster H von (1984) Observing systems. Intersystems Publications, Seaside, p 331

    Google Scholar 

  47. Spencer-Brown G (1997) Laws of form. Gesetze der Form. Bohmeier Verlag, Lübeck, p 200

    Google Scholar 

  48. Luhmann N (2008) Soziale Systeme. Grundriß einer allgemeinen Theorie. Suhrkamp, Frankfurt/Main, p 674

    Google Scholar 

  49. Luhmann N (2006) Einführung in die Systemtheorie. Heidelberg, p 347

    Google Scholar 

  50. Egner H (2008a) Gesellschaft, Mensch, Umwelt–beobachtet. Ein Beitrag zur Theorie der Geographie. Erdkundliches Wissen. Franz Steiner, Stuttgart, p 208

    Google Scholar 

  51. Luhmann N (1987) Soziale Systeme. Grundriß einer allgemeinen Theorie. Suhrkamp, Frankfurt/Main, p 674

    Google Scholar 

  52. Luhmann N (1997a) Selbstreferentielle Systeme. In: Simon FB (ed) Lebende Systeme. Wirklichkeitskonstruktionen in der systemischen Therapie. Suhrkamp, Frankfurt/Main

    Google Scholar 

  53. Maturana HR (1982) Erkennen: Die Organisation und Verkörperung von Wirklichkeit. Ausgewählte Arbeiten zur biologischen Epistemologie. Wissenschaftstheorie, Wissenschaft und Philosophie. Vieweg, Braunschweig/Wiesbaden, p 322

    Google Scholar 

  54. Maturana HR, Varela FJ (1984) Der Baum der Erkenntnis. Die biologischen Wurzeln des menschlichen Erkennens, p 280

    Google Scholar 

  55. Maturana HR, Varela FJ (1982) Autopoietische Systeme: Eine Bestimmung der lebendigen Organisation. In: Maturana HR (ed) Erkennen: Die Organisation und Verkörperung von Wirklichkeit. Ausgewählte Arbeiten zur biologischen Epistemologie. Wissenschaftstheorie, Wissenschaft und Philosophie. Vieweg, Braunschweig/Wiesbaden, pp 170–235

    Google Scholar 

  56. Bühl WL (1987) Grenzen der Autopoiesis. Kölner Z für Soziologie und Sozialpsychologie 39:225–254

    Google Scholar 

  57. Roth G (1986) Selbstorganisation—Selbsterhaltung—Selbstreferentialität. In: Dress A, Henrichs H, Küppers G (ed) Selbstorganisation. Die Entstehung von Ordnung in Natur und Gesellschaft. Piper, München, Zürich, p 149–180

    Google Scholar 

  58. Allefeld C (1999) Erkenntnistheoretische Konsequenzen der Systemtheorie. Die Theorie selbstreferentieller Systeme und der Konstruktivismus. Master Thesis, Freie Universität Berlin, Berlin, p 85

    Google Scholar 

  59. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Die Naturwiss 58(10): 465–523

    Google Scholar 

  60. Maturana HR (1994) Was ist Erkennen? Piper, München, p 244

    Google Scholar 

  61. Lippe zur R (1994) Denken und Leben. Essay zur Einführung von Rudolf zur Lippe. In: Maturana HR (ed) Was ist Erkennen? Piper, München, pp 7–23

    Google Scholar 

  62. Jantsch E (1979) Die Selbstorganisation des Universums. Vom Urknall zum menschlichen Geist. Hanser Verlag, Darmstadt, p 464

    Google Scholar 

  63. Maturana HR (1980) Autopoiesis: reproduction, heredity and evolution. In: Zeleny M (ed) Autopoiesis, dissipative structures and spontaneous social orders, Boulder, pp 45–79

    Google Scholar 

  64. Zeleny M (ed) (1980) Autopoiesis, dissipative structures and spontaneous social orders. In: AAAS selected symposium 55, Westview, Boulder, p 149

    Google Scholar 

  65. Egner H (2010) Theoretische Geographie. Wissenschaftliche Buchgesellschaft, Darmstadt, p 144

    Google Scholar 

  66. Pitty AF (1971) Introduction to geomorphology. Methuen and Co, Norwich, p 526

    Google Scholar 

  67. Pigliucci M (2000) Chaos and complexity. Should we be sceptical? Sceptic 8(3):62–70

    Google Scholar 

  68. Dikau R (1998) The need for field evidence in modelling landform evolution. In: Hergarten S, Neugebauer HJ (ed) Process modelling and landform evolution. Lecture notes in earth sciences, Springer-Verlag, Heidelberg, pp 3–12

    Google Scholar 

  69. Slaymaker O (1991) Mountain geomorphology: a theoretical framework for measurement programmes. In: Crozier MJ (ed) Geomorphology in unstable regions. Catena, Cremlingen, pp 427–437

    Google Scholar 

  70. von Elverfeldt K, Keiler M (2008) Offene Systeme und ihre Umwelt–Systemperspektiven in der Geomorphologie. In: Egner H, Ratter BMW, Dikau R (eds) Umwelt als System–System als Umwelt? Systemtheorien auf dem Prüfstand. Oekom, München, pp 75–102

    Google Scholar 

  71. von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111(2872):23–29

    Article  Google Scholar 

  72. Schrott L, Niederheide A, Hankammer M, Hufschmidt G, Dikau R (2002) Sediment storage in a mountain catchment: geomorphic coupling and temporal variability (Reintal, Bavarian Alps, Germany). Z Geomorphol 127:175–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

von Elverfeldt, K. (2012). First Problem Area: Coherence of Basic Assumptions and Concepts. In: System Theory in Geomorphology. Springer Theses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2822-6_3

Download citation

Publish with us

Policies and ethics