Skip to main content

Genomics of Prostate Cancer

  • Chapter
  • First Online:
Stem Cells and Human Diseases

Abstract

Prostate cancer is one of the most common types of cancer afflicting the male population. Although prostate cancer is initially slow-growing and regresses upon androgen ablation, the disease is capable of transiting into an aggressive and metastatic form that is hormone refractory. Studies have attributed alterations in the cancer genome and transcriptome as being integral to this transition process. With the aim of developing alternative therapeutic strategies for advanced prostate ­cancer, research efforts are now directed towards a more comprehensive understanding of prostate cancer genomics. Herein, we review the progress made recently in prostate cancer genomics research with a focus on the application of next generation ­sequencing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society (2010) Cancer facts & figures. American Cancer Society, Atlanta

    Google Scholar 

  2. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK (eds) (2011) SEER cancer statistics review, 1975–2008. National Cancer Institute, Bethesda

    Google Scholar 

  3. Wang R, Tomlins SA, Chinnaiyan AM (2009) Androgen regulation of prostate cancer gene fusions. In: Androgen action in prostate cancer. Springer, New York, pp 701–721

    Chapter  Google Scholar 

  4. Lassi K, Dawson NA (2009) Emerging therapies in castrate-resistant prostate cancer. Curr Opin Oncol 21(3):260–265

    Article  PubMed  CAS  Google Scholar 

  5. Singh AS, Figg WD (2005) In vivo models of prostate cancer metastasis to bone. J Urol 174(3):820–826

    Article  PubMed  Google Scholar 

  6. Bubendorf L et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31(5):578–583

    Article  PubMed  CAS  Google Scholar 

  7. Huggins C, Hodges CV (1972) Studies on prostatic cancer. I. The effect of castration, of ­estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin 22(4):232–240

    Article  PubMed  CAS  Google Scholar 

  8. Eder IE et al (2002) Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Ther 9(2):117–125

    Article  PubMed  CAS  Google Scholar 

  9. Agoulnik IU et al (2005) Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res 65(17):7959–7967

    PubMed  CAS  Google Scholar 

  10. Gregory CW et al (1998) Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 58(24):5718–5724

    PubMed  CAS  Google Scholar 

  11. Hara T et al (2003) Enhanced androgen receptor signaling correlates with the androgen-­refractory growth in a newly established MDA PCa 2b-hr human prostate cancer cell subline. Cancer Res 63(17):5622–5628

    PubMed  CAS  Google Scholar 

  12. Zhang L et al (2003) Interrogating androgen receptor function in recurrent prostate cancer. Cancer Res 63(15):4552–4560

    PubMed  CAS  Google Scholar 

  13. Pound CR et al (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281(17):1591–1597

    Article  PubMed  CAS  Google Scholar 

  14. Chen CD et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10(1):33–39

    Article  PubMed  CAS  Google Scholar 

  15. Koehler AN (2010) A complex task? Direct modulation of transcription factors with small molecules. Curr Opin Chem Biol 14(3):331–340

    Article  PubMed  CAS  Google Scholar 

  16. Bocquel MT et al (1989) The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific. Nucleic Acids Res 17(7):2581–2595

    Article  PubMed  CAS  Google Scholar 

  17. Meyer ME et al (1989) Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57(3):433–442

    Article  PubMed  CAS  Google Scholar 

  18. Wang Q et al (2007) A hierarchical network of transcription factors governs androgen ­receptor-dependent prostate cancer growth. Mol Cell 27(3):380–392

    Article  PubMed  CAS  Google Scholar 

  19. Friedman JR, Kaestner KH (2006) The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci 63(19–20):2317–2328

    Article  PubMed  CAS  Google Scholar 

  20. Gao N et al (2003) The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 17(8):1484–1507

    Article  PubMed  CAS  Google Scholar 

  21. Lupien M et al (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132(6):958–970

    Article  PubMed  CAS  Google Scholar 

  22. Ewen ME (2000) Where the cell cycle and histones meet. Genes Dev 14(18):2265–2270

    Article  PubMed  CAS  Google Scholar 

  23. Tsai FY, Orkin SH (1997) Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89(10):3636–3643

    PubMed  CAS  Google Scholar 

  24. Massie CE et al (2007) New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep 8(9):871–878

    Article  PubMed  CAS  Google Scholar 

  25. Yu J et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17(5):443–454

    Article  PubMed  CAS  Google Scholar 

  26. van Bokhoven A et al (2003) Spectral karyotype (SKY) analysis of human prostate carcinoma cell lines. Prostate 57(3):226–244

    Article  PubMed  CAS  Google Scholar 

  27. Beheshti B et al (2001) Evidence of chromosomal instability in prostate cancer determined by spectral karyotyping (SKY) and interphase fish analysis. Neoplasia 3(1):62–69

    Article  PubMed  CAS  Google Scholar 

  28. Ishkanian AS et al (2009) High-resolution array CGH identifies novel regions of genomic alteration in intermediate-risk prostate cancer. Prostate 69(10):1091–1100

    Article  PubMed  CAS  Google Scholar 

  29. Brookman-Amissah N et al (2005) Genome-wide screening for genetic changes in a matched pair of benign and prostate cancer cell lines using array CGH. Prostate Cancer Prostatic Dis 8(4):335–343

    Article  PubMed  CAS  Google Scholar 

  30. Celep F et al (2003) Detection of chromosomal aberrations in prostate cancer by fluorescence in situ hybridization (FISH). Eur Urol 44(6):666–671

    Article  PubMed  Google Scholar 

  31. Liu HL et al (2001) Detection of low level HER-2/neu gene amplification in prostate cancer by fluorescence in situ hybridization. Cancer J 7(5):395–403

    PubMed  CAS  Google Scholar 

  32. Trybus TM et al (1996) Distinct areas of allelic loss on chromosomal regions 10p and 10q in human prostate cancer. Cancer Res 56(10):2263–2267

    PubMed  CAS  Google Scholar 

  33. Pesche S et al (1998) PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 16(22):2879–2883

    Article  PubMed  CAS  Google Scholar 

  34. Palmberg C et al (1997) Androgen receptor gene amplification in a recurrent prostate cancer after monotherapy with the nonsteroidal potent antiandrogen Casodex (bicalutamide) with a subsequent favorable response to maximal androgen blockade. Eur Urol 31(2):216–219

    PubMed  CAS  Google Scholar 

  35. Linja MJ et al (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61(9):3550–3555

    PubMed  CAS  Google Scholar 

  36. Tomlins SA et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648

    Article  PubMed  CAS  Google Scholar 

  37. Tomlins SA et al (2007) Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448(7153):595–599

    Article  PubMed  CAS  Google Scholar 

  38. Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293

    Article  PubMed  CAS  Google Scholar 

  39. Tomlins SA et al (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10(2):177–188

    Article  PubMed  CAS  Google Scholar 

  40. Shin S et al (2009) Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81. Cancer Res 69(20):8102–8110

    Article  PubMed  CAS  Google Scholar 

  41. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696

    Article  PubMed  CAS  Google Scholar 

  42. Stapleton AM et al (1997) Primary human prostate cancer cells harboring p53 mutations are clonally expanded in metastases. Clin Cancer Res 3(8):1389–1397

    PubMed  CAS  Google Scholar 

  43. Douglas DA et al (2006) Novel mutations of epidermal growth factor receptor in localized prostate cancer. Front Biosci 11:2518–2525

    Article  PubMed  CAS  Google Scholar 

  44. Newmark JR et al (1992) Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 89(14):6319–6323

    Article  PubMed  CAS  Google Scholar 

  45. Peraldo-Neia C et al (2011) Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer. BMC Cancer 11:31

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki H et al (1998) Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58(2):204–209

    PubMed  CAS  Google Scholar 

  47. Berger MF et al (2011) The genomic complexity of primary human prostate cancer. Nature 470(7333):214–220

    Article  PubMed  CAS  Google Scholar 

  48. Taylor BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22

    Article  PubMed  CAS  Google Scholar 

  49. Robbins CM et al (2011) Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res 21(1):47–55

    Article  PubMed  CAS  Google Scholar 

  50. Hastings PJ et al (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10(8):551–564

    Article  PubMed  CAS  Google Scholar 

  51. Nupponen NN, Visakorpi T (2000) Molecular cytogenetics of prostate cancer. Microsc Res Tech 51(5):456–463

    Article  PubMed  CAS  Google Scholar 

  52. Brothman AR (2002) Cytogenetics and molecular genetics of cancer of the prostate. Am J Med Genet 115(3):150–156

    Article  PubMed  Google Scholar 

  53. Brothman AR (1997) Cytogenetic studies in prostate cancer: are we making progress? Cancer Genet Cytogenet 95(1):116–121

    Article  PubMed  CAS  Google Scholar 

  54. Atkin NB, Baker MC (1985) Chromosome 10 deletion in carcinoma of the prostate. N Engl J Med 312(5):315

    PubMed  CAS  Google Scholar 

  55. Lundgren R et al (1988) Multiple structural chromosome rearrangements, including del(7q) and del(10q), in an adenocarcinoma of the prostate. Cancer Genet Cytogenet 35(1):103–108

    Article  PubMed  CAS  Google Scholar 

  56. Carter BS et al (1990) Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 87(22):8751–8755

    Article  PubMed  CAS  Google Scholar 

  57. Vorsanova SG, Yurov YB, Iourov IY (2010) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1

    Article  PubMed  CAS  Google Scholar 

  58. Persson K et al (1999) Chromosomal aberrations in breast cancer: a comparison between cytogenetics and comparative genomic hybridization. Genes Chromosomes Cancer 25(2):115–122

    Article  PubMed  CAS  Google Scholar 

  59. Deubler DA et al (1997) Allelic loss detected on chromosomes 8, 10, and 17 by fluorescence in situ hybridization using single-copy P1 probes on isolated nuclei from paraffin-embedded prostate tumors. Am J Pathol 150(3):841–850

    PubMed  CAS  Google Scholar 

  60. Brothman AR et al (1992) Analysis of prostatic tumor cultures using fluorescence in-situ hybridization (FISH). Cancer Genet Cytogenet 62(2):180–185

    Article  PubMed  CAS  Google Scholar 

  61. Holcomb IN et al (2009) Comparative analyses of chromosome alterations in soft-tissue metastases within and across patients with castration-resistant prostate cancer. Cancer Res 69(19):7793–7802

    Article  PubMed  CAS  Google Scholar 

  62. Kim JH et al (2007) Integrative analysis of genomic aberrations associated with prostate ­cancer progression. Cancer Res 67(17):8229–8239

    Article  PubMed  CAS  Google Scholar 

  63. Liu W et al (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15(5):559–565

    Article  PubMed  CAS  Google Scholar 

  64. Trotman LC et al (2003) Pten dose dictates cancer progression in the prostate. PLoS Biol 1(3):E59

    Article  PubMed  Google Scholar 

  65. Visakorpi T et al (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9(4):401–406

    Article  PubMed  CAS  Google Scholar 

  66. DeMarzo AM et al (2003) Pathological and molecular aspects of prostate cancer. Lancet 361(9361):955–964

    Article  PubMed  CAS  Google Scholar 

  67. Yoshimoto M et al (2007) FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer 97(5):678–685

    Article  PubMed  CAS  Google Scholar 

  68. Stambolic V et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39

    Article  PubMed  CAS  Google Scholar 

  69. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378

    Article  PubMed  CAS  Google Scholar 

  70. Feilotter HE et al (1998) Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 16(13):1743–1748

    Article  PubMed  CAS  Google Scholar 

  71. Cairns P et al (1997) Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57(22):4997–5000

    PubMed  CAS  Google Scholar 

  72. Wang S et al (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4(3):209–221

    Article  PubMed  CAS  Google Scholar 

  73. Kwabi-Addo B et al (2001) Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci USA 98(20):11563–11568

    Article  PubMed  CAS  Google Scholar 

  74. Sircar K et al (2009) PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol 218(4):505–513

    Article  PubMed  CAS  Google Scholar 

  75. Meeks JJ, Schaeffer EM (2011) Genetic regulation of prostate development. J Androl 32(3):210–217

    Article  PubMed  CAS  Google Scholar 

  76. Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25(2):276–308

    Article  PubMed  CAS  Google Scholar 

  77. Buchanan G et al (2001) Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev 20(3–4):207–223

    Article  PubMed  CAS  Google Scholar 

  78. Veldscholte J et al (1992) Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 31(8):2393–2399

    Article  PubMed  CAS  Google Scholar 

  79. Veldscholte J et al (1990) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 173(2):534–540

    Article  PubMed  CAS  Google Scholar 

  80. Maher CA et al (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234):97–101

    Article  PubMed  CAS  Google Scholar 

  81. Druker BJ et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566

    Article  PubMed  CAS  Google Scholar 

  82. Maher CA et al (2009) Chimeric transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci USA 106(30):12353–12358

    Article  PubMed  CAS  Google Scholar 

  83. Fullwood MJ et al (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19(4):521–532

    Article  PubMed  CAS  Google Scholar 

  84. Sboner A et al (2010) FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol 11(10):R104

    Article  PubMed  CAS  Google Scholar 

  85. Pflueger D et al (2011) Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res 21(1):56–67

    Article  PubMed  CAS  Google Scholar 

  86. Inaki K et al (2011) Transcriptional consequences of genomic structural aberrations in breast cancer. Genome Res 21(5):676–687

    Article  PubMed  CAS  Google Scholar 

  87. Wang XS et al (2009) An integrative approach to reveal driver gene fusions from paired-end sequencing data in cancer. Nat Biotechnol 27(11):1005–1011

    Article  PubMed  CAS  Google Scholar 

  88. Mani RS et al (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326(5957):1230

    Article  PubMed  CAS  Google Scholar 

  89. Lin C et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083

    Article  PubMed  CAS  Google Scholar 

  90. Fullwood MJ et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64

    Article  PubMed  CAS  Google Scholar 

  91. Lieberman-Aiden E et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  PubMed  CAS  Google Scholar 

  92. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153

    Article  PubMed  CAS  Google Scholar 

  93. Fraga MF et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  PubMed  CAS  Google Scholar 

  94. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054

    Article  PubMed  CAS  Google Scholar 

  95. Perry AS et al (2010) The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol 7(12):668–680

    Article  PubMed  CAS  Google Scholar 

  96. Kang GH et al (2004) Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol 202(2):233–240

    Article  PubMed  CAS  Google Scholar 

  97. Coolen MW et al (2010) Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 12(3):235–246

    PubMed  CAS  Google Scholar 

  98. Maruyama R et al (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 8(2):514–519

    PubMed  CAS  Google Scholar 

  99. Yegnasubramanian S et al (2008) DNA hypomethylation arises later in prostate cancer ­progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res 68(21):8954–8967

    Article  PubMed  CAS  Google Scholar 

  100. Chen Z et al (2010) Histone modifications and chromatin organization in prostate cancer. Epigenomics 2(4):551–560

    Article  PubMed  CAS  Google Scholar 

  101. Yamane K et al (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125(3):483–495

    Article  PubMed  CAS  Google Scholar 

  102. Metzger E et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439

    PubMed  CAS  Google Scholar 

  103. Wang Q et al (2009) Androgen receptor regulates a distinct transcription program in ­androgen-independent prostate cancer. Cell 138(2):245–256

    Article  PubMed  CAS  Google Scholar 

  104. Yu J et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67(22):10657–10663

    Article  PubMed  CAS  Google Scholar 

  105. Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23(3):289–296

    Article  PubMed  CAS  Google Scholar 

  106. Seligson DB et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266

    Article  PubMed  CAS  Google Scholar 

  107. Ellinger J et al (2010) Global levels of histone modifications predict prostate cancer recurrence. Prostate 70(1):61–69

    Article  PubMed  CAS  Google Scholar 

  108. Suikki HE et al (2010) Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate 70(8):889–898

    PubMed  CAS  Google Scholar 

  109. Kahl P et al (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66(23):11341–11347

    Article  PubMed  CAS  Google Scholar 

  110. Varambally S et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907):624–629

    Article  PubMed  CAS  Google Scholar 

  111. Weichert W et al (2008) Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 98(3):604–610

    Article  PubMed  CAS  Google Scholar 

  112. Halkidou K et al (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59(2):177–189

    Article  PubMed  CAS  Google Scholar 

  113. Kobayashi Y et al (2011) DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res 21(7):1017–1027

    Article  PubMed  CAS  Google Scholar 

  114. Huang ZQ et al (2003) A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and mediator for transcription. EMBO J 22(9):2146–2155

    Article  PubMed  CAS  Google Scholar 

  115. Serandour AA et al (2011) Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res 21(4):555–565

    Article  PubMed  CAS  Google Scholar 

  116. Heinz S et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589

    Article  PubMed  CAS  Google Scholar 

  117. Iljin K et al (2006) TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res 66(21):10242–10246

    Article  PubMed  CAS  Google Scholar 

  118. Olopade OI et al (2008) Advances in breast cancer: pathways to personalized medicine. Clin Cancer Res 14(24):7988–7999

    Article  PubMed  CAS  Google Scholar 

  119. Bjorkman M et al (2008) Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positive prostate cancer. Int J Cancer 123(12):2774–2781

    Article  PubMed  CAS  Google Scholar 

  120. Wright JL, Lange PH (2007) Newer potential biomarkers in prostate cancer. Rev Urol 9(4):207–213

    PubMed  Google Scholar 

  121. Mistry K, Cable G (2003) Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma. J Am Board Fam Pract 16(2):95–101

    Article  PubMed  Google Scholar 

  122. Bangma CH, Roemeling S, Schroder FH (2007) Overdiagnosis and overtreatment of early detected prostate cancer. World J Urol 25(1):3–9

    Article  PubMed  CAS  Google Scholar 

  123. Andriole GL et al (2009) Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360(13):1310–1319

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biomedical Research Council/Science and Engineering Research Council of A*STAR (Agency for Science and Technology), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Cheung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chng, K.R., Chuah, S.C., Cheung, E. (2012). Genomics of Prostate Cancer. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_8

Download citation

Publish with us

Policies and ethics