Skip to main content

Scanning Electrochemical Microscopy Applied to Cancer Related Studies

  • Chapter
  • First Online:
Thin Films and Coatings in Biology

Abstract

This book chapter will not only provide an overview of the SECM principles but will also focus on SECM and cancer. More precisely we will look at biomarkers involved in cancer and SECM experiments concerning mammalian cancer cells. A description of selected SECM modes will also be included as well as an introduction to Bio-SECM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haggerty, L., Lenhoff, A.M.: STM and AFM in biotechnology. Biotechnol. Prog. 9(1), 1–11 (1993)

    Google Scholar 

  2. Rugar, D., Hansma, P.: Atomic force microscopy. Phys. Today 43(10), 23–30 (1990)

    Google Scholar 

  3. Giessibl, F.J.: Principles and applications of the qPlus Sensor. In: Morita S, Giessibl F.J., Wiesendanger R. (Eds.) Noncontact atomic force microscopy, pp. 121–142. Springer, Berlin

    Google Scholar 

  4. Lieber, C.M., Wu, X.L.: Scanning tunneling microscopy studies of low-dimensional materials: probing the effects of chemical substitution at the atomic level. Acc. Chem. Res. 24(6), 170–177 (1991)

    Google Scholar 

  5. Amemiya, S., et al.: Scanning electrochemical microscopy. Ann. Rev. Anal. Chem. 1, 95–131 (2008)

    Google Scholar 

  6. Bard, A.J., et al.: Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61(2), 132–138 (1989)

    Google Scholar 

  7. Wittstock, G., et al.: SECM feedback imaging of enzymatic activity on agglomerated microbeads. Electroanalysis 13(8–9), 669–675 (2001)

    Google Scholar 

  8. Wittstock, G.: Modification and characterization of artificially patterned enzymatically active surfaces by scanning electrochemical microscopy. Fresen. J. Anal. Chem. 370(4), 303–315 (2001)

    Google Scholar 

  9. Roberts, W.S., et al.: Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens. Bioelectron. 23, 301–318 (2007)

    Google Scholar 

  10. Amemiya, S., et al.: Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond. Anal. Bioanal. Chem. 386(3), 458–471 (2006)

    MathSciNet  Google Scholar 

  11. Sun, P., et al.: Nanoelectrochemistry of mammalian cells. Proc. Nat. Acad. Sci. 105(2), 443–448 (2008)

    Google Scholar 

  12. Zheng, X.T., Li, C.M.: Single cell analysis at the nanoscale. Chem. Soc. Rev. 41(6), 2061–2071 (2012)

    ADS  Google Scholar 

  13. Hengstenberg, A., et al.: Spatially resolved detection of neurotransmitter secretion from individual cells by means of scanning electrochemical microscopy. Angew. Chem. Int. Ed. 40(5), 905–908 (2001)

    Google Scholar 

  14. Kurulugama, R.T., et al.: Scanning electrochemical microscopy of model neurons: constant distance imaging. Anal. Chem. 77(4), 1111–1117 (2005)

    Google Scholar 

  15. Wightman, R.M.: Probing cellular chemistry in biological systems with microelectrodes. Science 311(5767), 1570–1574 (2006)

    ADS  Google Scholar 

  16. Borgmann, S.: Electrochemical quantification of reactive oxygen and nitrogen: challenges and opportunities. Anal. Bioanal. Chem. 394(1), 95–105 (2009)

    Google Scholar 

  17. Shiku, H., Ohya, H. Matsue, T.: Scanning electrochemical microscopy applied to biological systems. In: Bard A.J., Stratmann, M. (eds.) Encyclopedia of electrochemistry, pp 257–275. Wiley-VCH, NY

    Google Scholar 

  18. Gyurcsányi, R.E., et al.: Chemical imaging of biological systems with the scanning electrochemical microscope. Bioelectrochemistry 63(1–2), 207–215 (2004)

    Google Scholar 

  19. Wightman, R.M., Wipf, D.O.: Voltammetry at ultramicroelectrodes. In: Bard A.J. (ed.) Electroanalytical chemistry, pp 267–353. Marcel Dekker, New York (1989)

    Google Scholar 

  20. Montenegro, M.I., Queirós, M.A., Daschbach, J.L. (eds.): Microelectrodes: Theory and Applications. NATO ASI Series, Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  21. Heinze, J.: Ultramicroelectrodes in electrochemistry. Angew. Chem. Int. Ed. Engl. 32(9), 1268–1288 (1993)

    Google Scholar 

  22. Forster, R.J.: Microelectrodes: new dimensions in electrochemistry. Chem. Soc. Rev. 23(4), 289–297 (1994)

    Google Scholar 

  23. Zoski, C.G.: Steady-state voltammetry at microelectrodes. In: Vanýsek P. (ed.) Modern techniques in electroanalysis, pp. 241–312. Wiley, New York (1996)

    Google Scholar 

  24. Bard, A.J.: Introduction and principles. In: Bard A.J., Mirkin, M.V. (eds.) Scanning electrochemical microscopy, CRC Press, USA (2001)

    Google Scholar 

  25. Lefrou, C., Cornut, R.: Analytical expressions for quantitative scanning electrochemical microscopy (SECM). Chem. Phys. Chem. 11(3), 547–556 (2010)

    Google Scholar 

  26. Beaulieu, I., et al.: Biological scanning electrochemical microscopy and its application to live cell studies. Anal. Chem. 83(5), 1485–1492 (2011)

    Google Scholar 

  27. Sun, P., Mirkin, M.V.: Kinetics of electron-transfer reactions at nanoelectrodes. Anal. Chem. 78(18), 6526–6534 (2006)

    Google Scholar 

  28. Velmurugan, J., Sun, P., Mirkin, M.V.: Scanning electrochemical microscopy with gold nanotips: the effect of electrode material on electron transfer rates. J. Phys. Chem. C 113(1), 459–464 (2008)

    Google Scholar 

  29. Bonazza, H.L., Fernández, J.L.: An efficient method for fabrication of disk-shaped scanning electrochemical microscopy probes with small glass-sheath thicknesses. J. Electroanal. Chem. 650(1), 75–81 (2010)

    Google Scholar 

  30. Shin, H., et al.: Batch fabrication of atomic force microscopy probes with recessed integrated ring microelectrodes at a wafer level. Anal. Chem. 79(13), 4769–4777 (2007)

    Google Scholar 

  31. Avdic, A., et al.: Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM. Nanotechnology 22(14), 1–6 (2011)

    Google Scholar 

  32. Shao, Y., et al.: Nanometer-sized electrochemical sensors. Anal. Chem. 69(8), 1627–1634 (1997)

    Google Scholar 

  33. Hussien, E.M., Schuhmann, W., Schulte, A.: Shearforce-based constant-distance scanning electrochemical microscopy as fabrication tool for needle-type carbon-fiber nanoelectrodes. Anal. Chem. 82(13), 5900–5905 (2010)

    Google Scholar 

  34. Zoski, C.G.: Ultramicroelectrodes: design, fabrication, and characterization. Electroanalysis 14(15–16), 1041–1051 (2002)

    Google Scholar 

  35. Zoski, C.G.: UME fabrication/characterization basics. In: Cynthia G.Z. (ed.) Handbook of electrochemistry, pp. 189–260. Elsevier, Amstertam (2007)

    Google Scholar 

  36. Fu-Ren, F., Christophe D.: Preparation of Tips for Scanning Electrochemical Microscopy. In: Allen B.J., Michael M.V. (eds.) Scanning electrochemical microscopy, Second edn. pp 25–52, CRC Press, USA (2012)

    Google Scholar 

  37. Mirkin, M.V., et al.: Scanning electrochemical microscopy in the 21st century. Update 1: five years after. Phys. Chem. Chem. Phys. 13(48), 21196–21212 (2011)

    Google Scholar 

  38. Borgmann, S., et al.: Amperometric biosensors, in advances in electrochemical science and engineering. Wiley-VCH Verlag GmbH & Co. KGaA. pp 1–83 (2011)

    Google Scholar 

  39. Bohunicky, B., Mousa, S.A.: Biosensors: the new wave in cancer diagnosis. Nanotechnol. Sci. Appl. 4(1), 1–10 (2011)

    Google Scholar 

  40. Rasooly, A., Jacobson, J.: Development of biosensors for cancer clinical testing. Biosens. Bioelectron. 21(10), 1851–1858 (2006)

    Google Scholar 

  41. Grieshaber, D., et al.: Electrochemical biosensors - sensor principles and architectures. Sensors 8(3), 1400–1458 (2008)

    Google Scholar 

  42. Clark Jr, L.C., Clark, E.W.: A personalized history of the clark oxygen electrode. Int. Anesthesiol. Clin. 25(3), 1–29 (1987)

    Google Scholar 

  43. Clark Jr, L.C., Lyons, C.: Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY. Acad Sci. 102(1), 29–45 (1962)

    Google Scholar 

  44. Sun, P., Laforge, F.O., Mirkin, M.V.: Scanning electrochemical microscopy in the 21st Century. Phys. Chem. Chem. Phys. 9(7), 802–823 (2007)

    Google Scholar 

  45. Bard, A.J., Mirkin, M.V.: Scanning Electrochemical Microscopy, Second Edn. (2012)

    Google Scholar 

  46. Bertoncello, P.: Advances on scanning electrochemical microscopy (SECM) for energy. Energy Environ. Sci. 3(11), 1620–1633 (2010)

    Google Scholar 

  47. Barker, A.L., et al.: Scanning electrochemical microscopy: beyond the solid/liquid interface. Anal. Chim. Acta 385(1–3), 223–240 (1999)

    Google Scholar 

  48. Mirkin, M.V.: High resolution studies of heterogeneous processes with the scanning electrochemical microscope. Microchim. Acta 130(3), 127–153 (1999)

    Google Scholar 

  49. Mirkin, M.V., Horrocks, B.R.: Electroanalytical measurements using the scanning electrochemical microscope. Anal. Chim. Acta 406(2), 119–146 (2000)

    Google Scholar 

  50. Edwards, M.A., et al.: Scanning electrochemical microscopy: principles and applications to biophysical systems. Physiol. Meas. 27(12), R63–R108 (2006)

    ADS  Google Scholar 

  51. Kwak, J., Bard, A.J.: Scanning electrochemical microscopy. Theory of the feedback mode. Anal. Chem. 61(11), 1221–1227 (1989)

    Google Scholar 

  52. Ballesteros Katemann, B., Schulte, A., Schuhmann, W.: Constant-distance mode scanning electrochemical microscopy (SECM)—part i: adaptation of a non-optical shear-force-based positioning mode for SECM tips. Chem. A Eur. J. 9(9), 2025–2033 (2003)

    Google Scholar 

  53. Zhao, X., Diakowski, P.M., Ding, Z.: Deconvoluting topography and spatial physiological activity of live macrophage cells by scanning electrochemical microscopy in constant-distance mode. Anal. Chem. 82(20), 8371–8373 (2010)

    Google Scholar 

  54. Eckhard, K., Schuhmann, W.: Alternating current techniques in scanning electrochemical microscopy (AC-SECM). Analyst 133(11), 1486–1497 (2008)

    ADS  Google Scholar 

  55. Hengstenberg, A., Kranz, C., Schuhmann, W.: Facilitated tip-positioning and applications of non-electrode tips in scanning electrochemical microscopy using a shear force based constant-distance mode. Chem. A Eur. J. 6(9), 1547–1554 (2000)

    Google Scholar 

  56. Bauermann, P., Schuhmann, L.W., Schulte, A.: An advanced biological scanning electrochemical microscope (Bio-SECM) for studying individual living cells. Physical Chemistry Chemical Physics 6(15), 4003–4008 (2004)

    Google Scholar 

  57. Etienne, M., et al.: Feedback-independent Pt nanoelectrodes for shear force-based constant-distance mode scanning electrochemical microscopy. Anal. Chem. 78(20), 7317–7324 (2006)

    Google Scholar 

  58. Eckhard, K., Schuhmann, W., Maciejewska, M.: Determination of optimum imaging conditions in AC-SECM using the mathematical distance between approach curves displayed in the impedance domain. Electrochim. Acta 54(7), 2125–2130 (2009)

    Google Scholar 

  59. Cougnon, C., et al.: Development of a phase-controlled constant-distance scanning electrochemical microscope. Anal. Chem. 81(9), 3654–3659 (2009)

    Google Scholar 

  60. Zu, Y., et al.: Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip. Anal. Chem. 73(10), 2153–2156 (2001)

    Google Scholar 

  61. Lee, Y., Ding, Z., Bard, A.J.: Combined scanning electrochemical/optical microscopy with shear force and current feedback. Anal. Chem. 74(15), 3634–3643 (2002)

    Google Scholar 

  62. Garay, M.F., et al.: Retrospective chemical analysis of tree rings by means of the scanning electrochemical microscopy with shear force feedback. Phys. Chem. Chem. Phys. 6(15), 4028–4033 (2004)

    MathSciNet  Google Scholar 

  63. Takahashi, Y., et al.: Transfected single-cell imaging by scanning electrochemical optical microscopy with shear force feedback regulation. Anal. Chem. 81(23), 9674–9681 (2009)

    Google Scholar 

  64. Nebel, M., et al.: 4D shearforce-based constant-distance mode scanning electrochemical microscopy. Anal. Chem. 82(18), 7842–7848 (2010)

    Google Scholar 

  65. Nebel, M., et al.: Local reactivity of diamond-like carbon modified PTFE membranes used in SO2 sensors. Electrochim. Acta. 55(27), 7923–7928 (2010)

    Google Scholar 

  66. Baltes, N., Heinze, J.: Imaging local proton fluxes through a polycarbonate membrane by using scanning electrochemical microscopy and functionalized alkanethiols. Chem. Phys. Chem. 10(1), 174–179 (2009)

    Google Scholar 

  67. Scott, E.R., Phipps, J.B., White, H.S.: Direct imaging of molecular transport through skin. J. Invest. Dermatol. 104(1), 142–145 (1995)

    Google Scholar 

  68. Mauzeroll, J., et al.: Detection of Tl(I) transport through a gramicidin − dioleoylphosphatidylcholine monolayer using the substrate generation − tip collection mode of scanning electrochemical microscopy. Langmuir 18(24), 9453–9461 (2002)

    Google Scholar 

  69. Mauzeroll, J., et al.: Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy. Proc. Natl. Acad. Sci. 101(51), 17582–17587 (2004)

    ADS  Google Scholar 

  70. Macpherson, J.V., Unwin, P.R.: Scanning electrochemical microscopy as an in vitro technique for measuring convective flow rates across dentine and the efficacy of surface blocking treatments. Electroanalysis 17(3), 197–204 (2005)

    Google Scholar 

  71. Roberts, W.S., et al.: Detection and imaging the expression of the trans-membrane protein CD44 in RT112 cells by use of enzyme-labeled antibodies and SECM. Biosens. Bioelectron. (In press)

    Google Scholar 

  72. Stoica, L., Neugebauer, S., Schuhmann, W.: Scanning electrochemical microscopy (SECM) as a tool in biosensor research. In: Renneberg R., Lisdat F. (eds.) Biosensing for the 21st Century, pp. 455–492, Springer, Berlin (2008)

    Google Scholar 

  73. Lee, C., Kwak, J., Anson, F.C.: Application of scanning electrochemical microscopy to generation/collection experiments with high collection efficiency. Anal. Chem. 63(14), 1501–1504 (1991)

    Google Scholar 

  74. Martin, R.D., Unwin, P.R.: Theory and experiment for the substrate generation/tip collection mode of the scanning electrochemical microscope: application as an approach for measuring the diffusion coefficient ratio of a redox couple. Anal. Chem. 70(2), 276–284 (1998)

    Google Scholar 

  75. Zhou, F., Unwin, P.R., Bard, A.J.: Scanning electrochemical microscopy. 16. Study of second-order homogeneous chemical reactions via the feedback and generation/collection modes. J. Phy. Chem. 96(12), 4917–4924 (1992)

    Google Scholar 

  76. Unwin, P.R., Bard, A.J.: Scanning electrochemical microscopy. 9. Theory and application of the feedback mode to the measurement of following chemical reaction rates in electrode processes. J. Phy. Chem. 95(20), 7814–7824 (1991)

    Google Scholar 

  77. Demaille, C., Unwin, P.R., Bard, A.J.: Scanning electrochemical microscopy. 33. Application to the study of ECE/DISP reactions. J. Phy. Chem. 100(33), 14137–14143 (1996)

    Google Scholar 

  78. Sánchez-Sánchez, C.M., et al.: Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods. Electrochim. Acta 55(27), 8252–8257 (2010)

    Google Scholar 

  79. Pust, S.E., Maier, W., Wittstock, G.: Investigation of localized catalytic and electrocatalytic processes and corrosion reactions with scanning electrochemical microscopy (SECM). Zeitschrift fur Physikalische Chemie 222(10), 1463–1517 (2008)

    Google Scholar 

  80. Eckhard, K., et al.: Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity. Phy. Chem. Chem. Phy. 8(45), 5359–5365 (2006)

    Google Scholar 

  81. Rodríguez-López, J.n., Alpuche-Avilés, M.A., Bard, A.J.: Interrogation of Surfaces for the Quantification of Adsorbed Species on Electrodes: Oxygen on Gold and Platinum in Neutral Media†. J. Am. Chem. Soc. 130(50), 16985–16995 (2008)

    Google Scholar 

  82. Mirkin, M.V., Fan, F.-R.F., Bard, A.J.: Scanning electrochemical microscopy part 13. Evaluation of the tip shapes of nanometer size microelectrodes. J. Electroanal. Chem. 328(1–2), 47–62 (1992)

    Google Scholar 

  83. Fan, F.R.F., Mirkin, M.V., Bard, A.J.: Polymer films on electrodes. 25. Effect of polymer resistance on the electrochemistry of poly(vinylferrocene): scanning electrochemical microscopic, chronoamperometric, and cyclic voltammetric studies. J. Phy. Chem. 98(5), 1475–1481 (1994)

    Google Scholar 

  84. Guo, J., Amemiya, S.: Permeability of the nuclear envelope at isolated xenopus oocyte nuclei studied by scanning electrochemical microscopy. Anal. Chem. 77(7), 2147–2156 (2005)

    Google Scholar 

  85. Zhan, W., Bard, A.J.: Scanning electrochemical microscopy. 56. Probing outside and inside single giant liposomes containing Ru(bpy)3 2+. Anal. Chem. 78(3), 726–733 (2005)

    Google Scholar 

  86. Lu, X., Wang, Q., Liu, X.: Review: recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics. Anal. Chim. Acta 601(1), 10–25 (2007)

    Google Scholar 

  87. Macpherson, J.V., et al.: In-situ imaging of ionic crystal dissolution using an integrated electrochemical/AFM probe. J. Am. Chem. Soc. 118(27), 6445–6452 (1996)

    Google Scholar 

  88. Niu, L., et al.: Application of scanning electrochemical microscope in the study of corrosion of metals. J. Mater. Sci. 44(17), 4511–4521 (2009)

    ADS  Google Scholar 

  89. Unwin, P.R., Bard, A.J.: Scanning electrochemical microscopy. 14. Scanning electrochemical microscope induced desorption: a new technique for the measurement of adsorption/desorption kinetics and surface diffusion rates at the solid/liquid interface. J. Phy. Chem. 96(12), 5035–5045 (1992)

    Google Scholar 

  90. Schulte, A., Nebel, M., Schuhmann, W.: Scanning electrochemical microscopy in neuroscience. Ann. Rev. Anal. Chem. 3, 299–318 (2010)

    Google Scholar 

  91. Mauzeroll, J., Bard, A.J.: Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells. Proc. National Acad. Sci. 101(21), 7862–7867 (2004)

    ADS  Google Scholar 

  92. Takahashi, Y., et al.: Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy. Langmuir 22(25), 10299–10306 (2006)

    Google Scholar 

  93. Soper, S.A., et al.: Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 21(10), 1932–1942 (2006)

    Google Scholar 

  94. Tothill, I.E.: Biosensors for cancer markers diagnosis. Semin. Cell Dev. Biol. 20(1), 55–62 (2009)

    Google Scholar 

  95. Chatterjee, S.K., Zetter, B.R.: Cancer biomarkers: knowing the present and predicting the future. Future oncol. 1(1), 37–50 (2005)

    Google Scholar 

  96. Ludwig, J.A., Weinstein, J.N.: Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5(11), 845–856 (2005)

    Google Scholar 

  97. Hanash, S.M., Pitteri, S.J., Faca, V.M.: Mining the plasma proteome for cancer biomarkers. Nature 452(7187), 571–579 (2008)

    ADS  Google Scholar 

  98. Wilson, M.S., Nie, W.: Multiplex measurement of seven tumor markers using an electrochemical protein chip. Anal. Chem. 78(18), 6476–6483 (2006)

    Google Scholar 

  99. Wu, J., et al.: A disposable multianalyte electrochemical immunosensor array for automated simultaneous determination of tumor markers. Clin. Chem. 53(8), 1495–1502 (2007)

    Google Scholar 

  100. Bard, A.J., Fan, F.-R.F.: Electrochemical detection of single molecules. Acc. Chem. Res. 29(12), 572–578 (1996)

    Google Scholar 

  101. Fan, F.-R.F., Bard, A.J.: Electrochemical detection of single molecules. Science 267(5199), 871–874 (1995)

    ADS  Google Scholar 

  102. Fan, F.-R.F., Kwak, J., Bard, A.J.: Single molecule electrochemistry. J. Am. Chem. Soc. 118(40), 9669–9675 (1996)

    Google Scholar 

  103. Kasai, S., et al.: Cytokine assay on a cellular chip by combining collagen gel embedded culture with scanning electrochemical microscopy. Anal. Chim. Acta 566(1), 55–59 (2006)

    Google Scholar 

  104. Whiteside, T.L.: Cytokines and cytokine measurements in a clinical laboratory. Clin. Diagn. Lab. Immunol. 1(3), 257–260 (1994)

    Google Scholar 

  105. Curfs, J.H., Meis, J.F., Hoogkamp-Korstanje, J.A.: A primer on cytokines: sources, receptors, effects, and inducers. Clin. Microbiol. Rev. 10(4), 742–780 (1997)

    Google Scholar 

  106. Coussens, L.M., Werb, Z.: Inflammation and cancer. Nature 420(6917), 860–867 (2002)

    ADS  Google Scholar 

  107. Bouraoui, Y., et al.: Pro-inflammatory cytokines and prostate-specific antigen in hyperplasia and human prostate cancer. Cancer Detect. Prev. 32(1), 23–32 (2008)

    Google Scholar 

  108. Mantovani, A., et al.: Cancer-related inflammation. Nature 454(7203), 436–444 (2008)

    ADS  Google Scholar 

  109. Kaler, P., Augenlicht, L., Klampfer, L.: Macrophage-derived IL-1β stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene 28(44), 3892–3902 (2009)

    Google Scholar 

  110. Valdivia-Silva, J.E., et al.: Effect of pro-inflammatory cytokine stimulation on human breast cancer: Implications of chemokine receptor expression in cancer metastasis. Cancer Lett. 283(2), 176–185 (2009)

    Google Scholar 

  111. Apte, R.N., et al.: Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur. J. Cancer 42(6), 751–759 (2006)

    Google Scholar 

  112. Mita, Y., et al.: Induction of toll-like receptor 4 in granulocytic and monocytic cells differentiated from HL-60 cells. Br. J. Haematol. 112(4), 1041–1047 (2001)

    Google Scholar 

  113. Fragaki, K., et al.: A novel leishmania infantum nuclear phosphoprotein Lepp 12 which stimulates IL1-beta synthesis in THP-1 transfectants. BMC Microbiol. 3(1), 1–13 (2003)

    Google Scholar 

  114. Collins, F.S., Brooks, L.D., Chakravarti, A.: A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8(12), 1229–1231 (1998)

    Google Scholar 

  115. Hinds, D.A., et al.: Whole-genome patterns of common DNA variation in three human populations. Science 307(5712), 1072–1079 (2005)

    ADS  Google Scholar 

  116. Fan, J.B., et al.: Highly parallel SNP genotyping. Cold Spring Harbor Laboratory Press, NY, pp 69–78 (2003)

    Google Scholar 

  117. Sachidanandam, R., et al.: A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822), 928–933 (2001)

    ADS  Google Scholar 

  118. Halushka, M.K., et al.: Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet. 22(3), 239–247 (1999)

    Google Scholar 

  119. Goode, E.L., Ulrich, C.M., Potter, J.D.: Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol. Biomark. Prev. 11(12), 1513–1530 (2002)

    Google Scholar 

  120. Ford, B.N., et al.: Identification of single nucleotide polymorphisms in human DNA repair genes. Carcinogenesis 21(11), 1977–1981 (2000)

    Google Scholar 

  121. Alam, M.N., Shamsi, M.H., Kraatz, H.-B.: Scanning positional variations in single-nucleotide polymorphism of DNA: an electrochemical study. Analyst 137(18), 4220–4225 (2012)

    ADS  Google Scholar 

  122. Hirschowitz, B.I.: Pepsinogen: its origins secretion and excretion. Physiol. Rev. 37(4), 475–511 (1957)

    Google Scholar 

  123. Abnet, C.C., et al.: Plasma pepsinogens, antibodies against helicobacter pylori, and risk of gastric cancer in the Shanghai Women’s Health Study Cohort. Br. J. Cancer 104(9), 1511–1516 (2011)

    Google Scholar 

  124. di Mario, F., Cavallaro, L.G.: Non-invasive tests in gastric diseases. Digestive and Liver Disease 40(7), 523–530 (2008)

    Google Scholar 

  125. Dinis-Ribeiro, M., et al.: Meta-analysis on the validity of pepsinogen test for gastric carcinoma, dysplasia or chronic atrophic gastritis screening. J. Med. Screen. 11(3), 141–147 (2004)

    Google Scholar 

  126. Yasukawa, T., et al.: Enzyme immunosensing of Pepsinogens 1 and 2 by scanning electrochemical microscopy. Biosens. Bioelectron. 22(12), 3099–3104 (2007)

    Google Scholar 

  127. Zabriskie, J.B.: Essential clinical immunology. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  128. Roitt, I.M., Delves, P.J.: Roitt’s essential immunology. 10th edn. p. 481 (2001)

    Google Scholar 

  129. Thomson, D.: The carcinoembryonic antigen (CEA) radioimmunoassay. Proc. Roy. Soc. Med. 65(7), 635–636 (1972)

    Google Scholar 

  130. Malyankar, U.M.: Tumor-associated antigens and biomarkers in cancer and immune therapy. Int. Rev. Immunol. 26(3–4), 223–247 (2007)

    Google Scholar 

  131. Shiku, H., Matsue, T., Uchida, I.: Detection of microspotted carcinoembryonic antigen on a glass substrate by scanning electrochemical microscopy. Anal. Chem. 68(7), 1276–1278 (1996)

    Google Scholar 

  132. Zhang, X., Peng, X., Jin, W.: Scanning electrochemical microscopy with enzyme immunoassay of the cancer-related antigen CA15-3. Anal. Chim. Acta 558(1–2), 110–114 (2006)

    Google Scholar 

  133. Song, W., Yan, Z., Hu, K.: Electrochemical immunoassay for CD10 antigen using scanning electrochemical microscopy. Biosens. Bioelectron. 38(1), 425–429 (2012)

    Google Scholar 

  134. Uherova, P., et al.: The clinical significance of CD10 antigen expression in diffuse large B-cell lymphoma. Am. J. Clin. Pathol. 115(4), 582–588 (2001)

    Google Scholar 

  135. Bogeski, I., et al.: Redox regulation of calcium ion channels: chemical and physiological aspects. Cell Calcium 50(5), 407–423 (2011)

    Google Scholar 

  136. Rotenberg, S.A., Mirkin, M.V.: Scanning electrochemical microscopy: detection of human breast cancer cells by redox environment. J. Mammary Gland Biol. Neoplasia 9(4), 375–382 (2004)

    Google Scholar 

  137. Koley, D., Bard, A.J.: Inhibition of the MRP1-mediated transport of the menadione-glutathione conjugate (Thiodione) in HeLa cells as studied by SECM. Proc. Natl. Acad. Sci. 109(29), 11522–11527 (2012)

    ADS  Google Scholar 

  138. Kaya, T., et al.: Monitoring the cellular activity of a cultured single cell by scanning electrochemical microscopy (SECM). A comparison with fluorescence viability monitoring. Biosens. Bioelectron. 18(11), 1379–1383 (2003)

    Google Scholar 

  139. Zhang, M.M.N., Long, Y.-T., Ding, Z.: Cisplatin effects on evolution of reactive oxygen species from single human bladder cancer cells investigated by scanning electrochemical microscopy. J. Inorg. Biochem. 108, 115–122 (2012)

    Google Scholar 

  140. Takahashi, Y., et al.: Electrochemical detection of epidermal growth factor receptors on a single living cell surface by scanning electrochemical microscopy. Anal. Chem. 81(7), 2785–2790 (2009)

    Google Scholar 

  141. Takahashi, Y., et al.: Electrochemical detection of receptor-mediated endocytosis by scanning electrochemical microscopy. Phy. Chem. Chem. Phy. 13(37), 16569–16573 (2011)

    Google Scholar 

  142. Pantaleo, M.A., et al.: Experimental results and related clinical implications of PET detection of epidermal growth factor receptor (EGFr) in cancer. Ann. Oncol. 20(2), 213–226 (2009)

    Google Scholar 

  143. Langer, A.: A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a cost-effective manner? BMC Health Services Research 10(283), 1–16 (2010)

    Google Scholar 

  144. Volkow, N.D., et al.: PET evaluation of the dopamine system of the human brain. J. Nucl. Med. 37(7), 1242–1256 (1996)

    Google Scholar 

  145. Allison, D.B., et al.: Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet. 7(1), 55–65 (2006)

    MathSciNet  Google Scholar 

  146. Czernin, J., Phelps, M.E.: Positron emission tomography scanning: current and future applications. Annu. Rev. Med. 53(1), 89–112 (2002)

    Google Scholar 

  147. Groves, A.M., et al.: Non-[18F]FDG PET in clinical oncology. Lancet Oncol. 8(9), 822–830 (2007)

    Google Scholar 

  148. Shields, A.: Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol. Imag. Biol. 8(3), 141–150 (2006)

    Google Scholar 

  149. Bomanji, J.B., Costa, D.C., Ell, P.J.: Clinical role of positron emission tomography in oncology. Lancet Oncol. 2(3), 157–164 (2001)

    Google Scholar 

  150. Fass, L.: Imaging and cancer: a review. Mol. Oncol. 2(2), 115–152 (2008)

    Google Scholar 

  151. Lawrence, J.P.: Physics and instrumentation of ultrasound. Crit. Care Med. 35(8 SUPPL.), S314–S322 (2007)

    Google Scholar 

  152. Paszek, M.J., et al.: Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3), 241–254 (2005)

    MathSciNet  Google Scholar 

  153. Lerner, R.M., Huang, S.R., Parker, K.J.: “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med. Biol. 16(3), 231–239 (1990)

    Google Scholar 

  154. Zhi, H., et al.: Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J. Ultrasound Med. 26(6), 807–815 (2007)

    MathSciNet  Google Scholar 

  155. Ophir, J., et al.: Elastographic Imaging. Ultrasound Med Biol 26(1), S23–S29 (2000)

    Google Scholar 

  156. Reddy, Y., Willert, R.P.: Endoscopic ultrasound: what is it and when should it be used? Clin. Med. J. Roy. Coll. Physicians 9(6), 539–543 (2009)

    Google Scholar 

  157. Korosec, F.R.: Basic principles of MRI and MR angiography. In: Carr, J.C., Carroll, T.J. (eds.) Magnetic resonance angiography, pp. 3–38. Springer, New York (2012)

    Google Scholar 

  158. Walt, D.R.: Miniature analytical methods for medical diagnostics. Science 308(5719), 217–219 (2005)

    Google Scholar 

  159. Dufva, M., Christensen, C.B.V.: Diagnostic and analytical applications of protein microarrays. Expert Rev. Proteomics 2(1), 41–48 (2005)

    Google Scholar 

  160. Sassolas, A., Leca-Bouvier, B.D., Blum, L.J.: DNA biosensors and microarrays. Chem. Rev. 108(1), 109–139 (2007)

    Google Scholar 

  161. Bally, M., et al.: Optical microarray biosensing techniques. Surf. Interface Anal. 38(11), 1442–1458 (2006)

    Google Scholar 

  162. Young, R.A.: Biomedical discovery with DNA arrays. Cell 102(1), 9–15 (2000)

    Google Scholar 

  163. Cooper, C.: Applications of microarray technology in breast cancer research. Breast Cancer Res. 3(3), 1–18 (2001)

    ADS  Google Scholar 

  164. Grouse, L.H., Munson, P.J., Nelson, P.S.: Sequence databases and microarrays as tools for identifying prostate cancer biomarkers. Urology 57(4, Supplement 1), 154–159 (2001)

    Google Scholar 

  165. Triche, T.J., Schofield, D., Buckley, J.: DNA microarrays in pediatric cancer. Cancer J. 7(1), 2–15 (2001)

    Google Scholar 

  166. Simon, R., Mirlacher, M., Sauter, G.: Tissue microarrays in cancer diagnosis. Expert Rev. Mol. Diagn. 3(4), 421–430 (2003)

    Google Scholar 

  167. Dolled-Filhart, M.P., Gustavson, M.D.: Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development. Expert Opin. Med. Diagn. 6(6), 569–583 (2012)

    Google Scholar 

  168. Conrad, D., Goyette, J., Thomas, P.: Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J. Gen. Intern. Med. 23, 78–84 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Mauzeroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beaulieu, I., Mauzeroll, J. (2013). Scanning Electrochemical Microscopy Applied to Cancer Related Studies. In: Nazarpour, S. (eds) Thin Films and Coatings in Biology. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2592-8_10

Download citation

Publish with us

Policies and ethics