Skip to main content

Future Particle Accelerator Developments for Radiation Therapy

  • Chapter
  • First Online:
Radiation Damage in Biomolecular Systems

Abstract

During the last decade particle beam cancer therapy has seen a rapid increase in interest, and several new centers have been built, are currently under construction, or are in an advanced stage of planning. Typical treatment centers today consist of an accelerator capable of producing proton or ion beams in an energy range of interest for medical treatment, i.e. providing a penetration depth in water of about 30 cm, a beam delivery system to transport the produced beam to the patient treatment rooms, and several patient stations, allowing for an optimal usage of the continuously produced beam. This makes these centers rather large and consequently expensive. Only major hospital centers situated in an area where they can draw on a population of several million can afford such an installation. In order to spread the use of particle beam cancer therapy to a broader population base it will be necessary to scale down the facility size and cost. This can in principle be done by reducing the number of treatment rooms to one, eliminating the need of an elaborate beam delivery system, and thereby reducing the building size and cost. Such a change should be going in parallel with a reduction of the accelerator itself, and a number of approaches to this are currently being pursued. If successful, such developments could eventually lead to a compact system where all components would fit into a single shielded room, not much different in size from a typical radiation vault for radiotherapy with X-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Mock et al., Radioth. Oncol. 73 Sup. 2 S29-S34 (2004); B. Glimelius et al., Acta Oncologica 44 836- 849 (2005)

    Google Scholar 

  2. J.B. Flanz, Nucl. Inst. Meth. B 261 768-772 (2007)

    Article  ADS  Google Scholar 

  3. www.stillriversystems.com

  4. T. Ohkawa, Phys. Soc. Japan Symp. Nucl. Phys. Tokyo, (1953)

    Google Scholar 

  5. K. Symon, D. Kerst, L. Jones L. Laslett, Terwiliger K., Phys. Rev. 103 1837 (1956)

    Google Scholar 

  6. A. A. Kolomensky, Sov. Phys. JETP 6 231 (1957)

    ADS  Google Scholar 

  7. R. Edgecok et al., Proc. of EPAC 2008, Genoa, Italy (2009)

    Google Scholar 

  8. K. Peach, et al., Proc of PAC 2009, Vancouver, BC, Canada

    Google Scholar 

  9. S. Sheehy, Proceedings pf PAC 2009, Vancouver, BC, Canada

    Google Scholar 

  10. U. Amaldi, et al., Nucl. Inst. Meth. A 521 512-529 (2004)

    Article  ADS  Google Scholar 

  11. U. Amaldi, et al., Nucl. Inst. Meth. A 620 563-577 (2010)

    Article  ADS  Google Scholar 

  12. http://archade.fr/english/

  13. U. Amaldi, S. Braccini, G. Magrin, P. Pearce, R. Zennaro, Ion acceleration system for medical and/or other applications, Patent WO 2008/081480 A1

    Google Scholar 

  14. U. Oelfke, T. Bortfeld, Technol. Cancer Res. Treat. 2-5 401 (2003)

    Google Scholar 

  15. O. Heid, T. Hughes, Proceedings of HB2010, Morschach, Switzerland (2010)

    Google Scholar 

  16. G.J. Caporaso, et al. Proceedings PAC 09, Vancouver, BC, Canada (2009)

    Google Scholar 

  17. A. Pavloski, et al., Sov. At. En. 28 549 (1970)

    Article  Google Scholar 

  18. S.E. Sampayan, et al., IEEE Trans. Diel. and Elec. Ins. 7 (3) pg. 334 (2000)

    Google Scholar 

  19. J. Harris, et. al., Appl. Phys. Lett. 93, 241502 (2008)

    Article  ADS  Google Scholar 

  20. J. Sullivan, J. Stanley, IEEE International Power Modulator Symposium (27th) and High-Voltage Workshop, Washington, DC, May 14-18, p. 215 (2006)

    Google Scholar 

  21. J. Leopold, et. al., IEEE Trans. Diel. And Elec. Ins. 12 (3) 530 (2005)

    Google Scholar 

  22. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43 267 (1979)

    Article  ADS  Google Scholar 

  23. P. Chen, J.M. Dawson, R.W. Huff, T. Katsouleas, Phys. Rev. Lett. 54 693-696 (1985)

    Article  ADS  Google Scholar 

  24. J. Faure, et al., Nature 431 541-544 (2004)

    Article  ADS  Google Scholar 

  25. S. Mangles, et al., Nature 431 535-538 (2004)

    Article  ADS  Google Scholar 

  26. C. Geddes, et al., Nature 431 538-541 (2004)

    Article  ADS  Google Scholar 

  27. M.J. Martin, Natl. Cancer Institute 101 450-451 (2009)

    Article  Google Scholar 

  28. G. Kraft, S. Kraft, New J. Phys. 11 025001

    Google Scholar 

  29. P.R. Bolton, et al., Nucl. Inst. Methods A620 1392-1400 (2010)

    Google Scholar 

  30. R.A. Snavely, et al., Phys. rev. Lett. 85 2945-2948 (2000)

    Article  ADS  Google Scholar 

  31. M. Hegelich, et al., Phys. Rev. Lett. 89 085002-1-4 (2002)

    Google Scholar 

  32. S. Hatchett, et al., Phys. Plasmas 5 2076-2082 (2000)

    Article  ADS  Google Scholar 

  33. M. Hegelich, et al., Phys. Plasmas 12 056314 (2005)

    Article  ADS  Google Scholar 

  34. H. Schwoerer, et al., Nature 439 445-448 (2006)

    Article  ADS  Google Scholar 

  35. T. Esirkepov, et al., Phys. Rev. Lett. 89 175003 (2002)

    Article  ADS  Google Scholar 

  36. B.M. Hegelich, et al., Nature 439 441-444 ((2006)

    Google Scholar 

  37. K. Zeil, et al., NJP 12 045015 (2010)

    Article  ADS  Google Scholar 

  38. J. Hein, et al., Conference Proceedings LEI 2009, ed. Dan Dumitras, AIP Conf. Proc. 1228 159-174

    Google Scholar 

  39. C.-M. Ma, et al., Laser Physics 16 639-646 (2006)

    Article  ADS  Google Scholar 

  40. W. Luo, E. Fourkal, J. Li, C.-M. Ma, Med. Phys. 32 794806 (2005)

    Google Scholar 

  41. S. Schell, J.J. Wilkens, Phys. Med. Biol. 54 N459-N466 (2009)

    Article  ADS  Google Scholar 

  42. S.D. Kraft, et al., 12 085003 (2010)

    Google Scholar 

  43. C. Richter, et al., Phys. Med. Biol. 56 1529-1543 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the DFG under contract WE3565-3 and the NSF under grant # CBET 0853157. MHH acknowledges support by the EU through a Marie Curie Fellowship under contract # PIIF-GA-2009-234814.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Holzscheiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Holzscheiter, M.H., Bassler, N. (2012). Future Particle Accelerator Developments for Radiation Therapy. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_30

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics