Skip to main content

Regulation of TGF-β Signaling and Metastatic Progression by Tumor Microenvironments

  • Chapter
  • First Online:
Signaling Pathways and Molecular Mediators in Metastasis

Abstract

The TGF-β signaling system comprises a complex and dynamic cascade of molecular interactions that invoke a variety of intracellular and extracellular reactions that coalesce to maintain tissue homeostasis. A rapidly accumulating body of scientific literature clearly demonstrates a conversion in TGF-β function from that of a powerful tumor suppressor in normal epithelium and early-stage carcinomas to that of a prometastatic molecule in their late-stage counterparts. Collectively, this malicious switch in TGF-β behavior is termed the “TGF-β Paradox.” Historically, cell autonomous changes that transpire during tumor development and progression have been studied extensively as a means to decipher the “TGF-β Paradox.” Although highly informative and intriguing, these findings have yet to unravel the molecular underpinnings of the “TGF-β Paradox,” thereby suggesting involvement of additional signaling components and players that originate beyond the confines of developing carcinomas. Indeed, recent studies have been directed at interrogating the microenvironments of developing carcinomas and how changes within this unique cellular niche manifest the “TGF-β Paradox.” For instance, tumor microenvironments house an array of essential cellular, structural, and humoral factors that include stromal cells and altered elastic moduli, integrins and their engagement of matrix proteins, hypoxic zones, and a host of cytokines, growth factors, and chemokines that collectively influence the response of carcinoma cells to TGF-β. Here we review recent findings demonstrating the importance of the tumor microenvironment to regulate TGF-β signaling and its stimulation of metastatic progression. In addition, we also highlight recent in vitro and in vivo scientific advances capable of recapitulating various aspects of the metastatic process and its regulation by TGF-β. Indeed, incorporating and extending these novel systems to analyses of the “TGF-β Paradox” may offer new inroads in resolving this enigma and improving the overall survival of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

2-Dimensional

3D:

3-Dimensional

CSF-1:

Colony stimulating factor-1

Dab2:

Disabled-2

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Epithelial-mesenchymal transition

ERK:

Extracellular signal-regulated kinase

FAK:

Focal adhesion kinase

Hgs:

Hepatocyte growth factor-regulated tyrosine kinase substrate

IHC:

Immunohistochemistry

JNK:

c-Jun N-terminal kinase

LOX:

Lysyl oxidase

MAPK:

Mitogen-activated protein kinase

MEC:

Mammary epithelial cell

MMP:

Matrix metalloproteinase

PTK:

Protein tyrosine kinase

RBM:

Reconstituted basement membrane

SARA:

Smad anchor for receptor activation

TAK-1:

TGF-β-activated kinase 1

TGF-β:

Transforming growth factor-β

TβR-I:

TGF-β type I receptor

TβR-II:

TGF-β type II receptor

TβR-III:

TGF-β type III receptor

VEGF:

Vascular endothelial growth factor

References

  1. Blobe GC, Schiemann WP, Lodish HF (2000) Role of TGF-β in human disease. N Engl J Med 342:1350–1358

    PubMed  CAS  Google Scholar 

  2. Galliher AJ, Neil JR, Schiemann WP (2006) Role of TGF-β in cancer progression. Future Oncol 2:743–763

    PubMed  CAS  Google Scholar 

  3. Massague J, Gomis RR (2006) The logic of TGF-β signaling. FEBS Lett 580:2811–2820

    PubMed  CAS  Google Scholar 

  4. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 3:807–821

    PubMed  CAS  Google Scholar 

  5. Tian M, Schiemann WP (2009) The TGF-β paradox in human cancer: an update. Future Oncol 5:259–271

    PubMed  CAS  Google Scholar 

  6. Schiemann WP (2007) Targeted TGF-β chemotherapies: friend or foe in treating human malignancies? Expert Rev Anticancer Ther 7:609–611

    PubMed  CAS  Google Scholar 

  7. Rahimi RA, Leof EB (2007) TGF-β signaling: a tale of two responses. J Cell Biochem 102:593–608

    PubMed  CAS  Google Scholar 

  8. Taylor MA, Parvani JG, Schiemann WP (2010) The pathophysiology of epithelial-­mesenchymal transition induced by TGF-β in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 15:169–190

    PubMed  Google Scholar 

  9. Wendt MK, Allington TM, Schiemann WP (2009) Mechanisms of the epithelial-mesenchymal transition by TGF-β. Future Oncol 5:1145–1168

    PubMed  CAS  Google Scholar 

  10. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    PubMed  CAS  Google Scholar 

  11. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55

    PubMed  CAS  Google Scholar 

  12. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP (2001) Genetic programs of epithelial cell plasticity directed by TGF-β. Proc Natl Acad Sci U S A 98:6686–6691

    PubMed  CAS  Google Scholar 

  13. Massague J (1998) TGF-β signal transduction. Annu Rev Biochem 67:753–791

    PubMed  CAS  Google Scholar 

  14. Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian TGF-β superfamily. Endocr Rev 23:787–823

    PubMed  CAS  Google Scholar 

  15. Gatza CE, Oh SY, Blobe GC (2010) Roles for the type III TGF-β receptor in human cancer. Cell Signal 22:1163–1174

    PubMed  CAS  Google Scholar 

  16. Feng XH, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    PubMed  CAS  Google Scholar 

  17. Moustakas A, Heldin CH (2005) Non-Smad TGF-β signals. J Cell Sci 118:3573–3584

    PubMed  CAS  Google Scholar 

  18. Shi Y, Massague J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    PubMed  CAS  Google Scholar 

  19. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    PubMed  CAS  Google Scholar 

  20. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGF-β receptor. Cell 95:779–791

    PubMed  CAS  Google Scholar 

  21. Miura S, Takeshita T, Asao H, Kimura Y, Murata K, Sasaki Y, Hanai JI, Beppu H, Tsukazaki T, Wrana JL, Miyazono K, Sugamura K (2000) Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol 20:9346–9355

    PubMed  CAS  Google Scholar 

  22. Hocevar BA, Smine A, Xu XX, Howe PH (2001) The adaptor molecule Disabled-2 links the TGF-β receptors to the Smad pathway. EMBO J 20:2789–2801

    PubMed  CAS  Google Scholar 

  23. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MAJ, Wrana JL, Falb D (1997) The MAD-related protein Smad7 associates with the TGF-β receptor and functions as an antagonist of TGF-β signaling. Cell 89:1165–1173

    PubMed  CAS  Google Scholar 

  24. Nakao A, Afrakht M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P (1997) Identification of Smad7, a TGF-β inducible antagonist of TGF-β signalling. Nature 389:631–635

    PubMed  CAS  Google Scholar 

  25. Souchelnytskyi S, Nakayama T, Nakao A, Moren A, Heldin CH, Christian JL, ten Dijke P (1998) Physical and functional interaction of murine and xenopus Smad7 with bone morphogenetic protein receptors and TGF-β receptors. J Biol Chem 273:25364–25370

    PubMed  CAS  Google Scholar 

  26. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with TGF-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480

    PubMed  CAS  Google Scholar 

  27. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-β receptor for degradation. Mol Cell 6:1365–1375

    PubMed  CAS  Google Scholar 

  28. Itoh S, ten Dijke P (2007) Negative regulation of TGF-β receptor/Smad signal transduction. Curr Opin Cell Biol 19:176–184

    PubMed  CAS  Google Scholar 

  29. Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol 19:385–394

    PubMed  CAS  Google Scholar 

  30. Galliher AJ, Schiemann WP (2006) β3 integrin and Src facilitate TGF-β mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 8:R42

    PubMed  Google Scholar 

  31. Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 67:3752–3758

    PubMed  CAS  Google Scholar 

  32. Galliher-Beckley AJ, Schiemann WP (2008) Grb2 binding to Tyr284 in TβR-II is essential for mammary tumor growth and metastasis stimulated by TGF-β. Carcinogenesis 29:244–251

    PubMed  CAS  Google Scholar 

  33. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol Cell 31:918–924

    PubMed  CAS  Google Scholar 

  34. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landstrom M (2008) The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10:1199–1207

    PubMed  CAS  Google Scholar 

  35. Azuma M, Motegi K, Aota K, Yamashita T, Yoshida H, Sato M (1999) TGF-β1 inhibits NF-κB activity through induction of IκB-α expression in human salivary gland cells: a possible mechanism of growth suppression by TGF-β1. Exp Cell Res 250:213–222

    PubMed  CAS  Google Scholar 

  36. Arsura M, Panta GR, Bilyeu JD, Cavin LG, Sovak MA, Oliver AA, Factor V, Heuchel R, Mercurio F, Thorgeirsson SS, Sonenshein GE (2003) Transient activation of NF-κB through a TAK1/IKK kinase pathway by TGF-β1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22:412–425

    PubMed  CAS  Google Scholar 

  37. Park J-I, Lee M-G, Cho K, Park B-J, Chae K-S, Byun D-S, Ryu B-K, Park Y-K, Chi S-G (2003) TGF-β1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-κB, JNK, and Ras signaling pathways. Oncogene 22:4314–4332

    PubMed  CAS  Google Scholar 

  38. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581

    PubMed  CAS  Google Scholar 

  39. You HJ, How T, Blobe GC (2009) The type III TGF-β receptor negatively regulates NF-κB signaling through its interaction with β-arrestin2. Carcinogenesis 30:1281–1287

    PubMed  CAS  Google Scholar 

  40. Neil JR, Johnson KM, Nemenoff RA, Schiemann WP (2008) Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-β through a PGE2-dependent mechanisms. Carcinogenesis 29:2227–2235

    PubMed  CAS  Google Scholar 

  41. Neil JR, Schiemann WP (2008) Altered TAB1:IκB kinase interaction promotes TGF-β-mediated NF-κB activation during breast cancer progression. Cancer Res 68:1462–1470

    PubMed  CAS  Google Scholar 

  42. Neil JR, Tian M, Schiemann WP (2009) X-linked inhibitor of apoptosis protein and its E3 ligase activity promote TGF-β-mediated NF-κB activation during breast cancer progression. J Biol Chem 284:21209–21217

    PubMed  CAS  Google Scholar 

  43. Tian M, Schiemann WP (2010) PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-β signaling during mammary tumorigenesis. FASEB J 24:1105–1116

    PubMed  CAS  Google Scholar 

  44. Brandl M, Seidler B, Haller F, Adamski J, Schmid RM, Saur D, Schneider G (2010) IKK(alpha) controls canonical TGF-β-SMAD signaling to regulate genes expressing SNAIL and SLUG during EMT in panc1 cells. J Cell Sci 123:4231–4239

    PubMed  CAS  Google Scholar 

  45. Wendt M, Schiemann W (2009) Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis. Breast Cancer Res 11:R68

    PubMed  Google Scholar 

  46. Wendt MK, Smith JA, Schiemann WP (2009) p130Cas is required for mammary tumor growth and TGF-β-mediated metastasis through regulation of Smad2/3 activity. J Biol Chem 284:34145–34156

    PubMed  CAS  Google Scholar 

  47. Wendt MK, Smith JA, Schiemann WP (2010) TGF-β-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene 29:6485–6498

    PubMed  CAS  Google Scholar 

  48. Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES, Cui Z, Thannickal VJ (2007) Combinatorial activation of FAK and AKT by TGF-β1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal 19:761–771

    PubMed  CAS  Google Scholar 

  49. Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, Horowitz JC, Day RM, Thomas PE (2003) Myofibroblast differentiation by TGF-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 278:12384–12389

    PubMed  CAS  Google Scholar 

  50. Park SS, Eom YW, Kim EH, Lee JH, Min DS, Kim S, Kim SJ, Choi KS (2004) Involvement of c-Src kinase in the regulation of TGF-β1-induced apoptosis. Oncogene 23:6272–6281

    PubMed  CAS  Google Scholar 

  51. Allington TM, Galliher-Beckley AJ, Schiemann WP (2009) Activated Abl kinase inhibits oncogenic TGF-β signaling and tumorigenesis in mammary tumors. FASEB J 23:4231–4243

    PubMed  CAS  Google Scholar 

  52. Allington TM, Schiemann WP (2011) The Cain and Abl of epithelial-mesenchymal transition and TGF-β in mammary epithelial cells. Cells Tissues Organs 193:98–113

    PubMed  CAS  Google Scholar 

  53. Wang S, Wilkes MC, Leof EB, Hirschberg R (2005) Imatinib mesylate blocks a non-Smad TGF-β pathway and reduces renal fibrogenesis in vivo. FASEB J 19:1–11

    PubMed  Google Scholar 

  54. Wilkes MC, Leof EB (2006) TGF-β activation of c-Abl is independent of receptor internalization and regulated by phosphatidylinositol 3-kinase and PAK2 in mesenchymal cultures. J Biol Chem 281:27846–27854

    PubMed  CAS  Google Scholar 

  55. Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal ­transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520

    PubMed  CAS  Google Scholar 

  56. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    PubMed  CAS  Google Scholar 

  57. Zavadil J, Bottinger EP (2005) TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24:5764–5774

    PubMed  CAS  Google Scholar 

  58. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    PubMed  CAS  Google Scholar 

  59. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massague J (2008) TGF-β primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77

    PubMed  CAS  Google Scholar 

  60. Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1981) New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A 78:5339–5343

    PubMed  CAS  Google Scholar 

  61. Moses HL, Branum EL, Proper JA, Robinson RA (1981) Transforming growth factor production by chemically transformed cells. Cancer Res 41:2842–2848

    PubMed  CAS  Google Scholar 

  62. Carr BI, Hayashi I, Branum EL, Moses HL (1986) Inhibition of DNA synthesis in rat hepatocytes by platelet-derived type β transforming growth factor. Cancer Res 46:2330–2334

    PubMed  CAS  Google Scholar 

  63. Silberstein GB, Daniel CW (1987) Reversible inhibition of mammary gland growth by TGF-β. Science 237:291–293

    PubMed  CAS  Google Scholar 

  64. Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT (1993) Anti-TGF-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. J Clin Invest 92:2569–2576

    PubMed  CAS  Google Scholar 

  65. Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM (1997) Transgenic mice overexpressing a dominant-negative mutant type II TGF-β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res 57:5564–5570

    PubMed  CAS  Google Scholar 

  66. Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM (2002) Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    PubMed  CAS  Google Scholar 

  67. Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals PJ, Koteliansky V, Arteaga CL (2002) Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559

    PubMed  CAS  Google Scholar 

  68. Tian F, Byfield SD, Parks WT, Stuelten CH, Nemani D, Zhang YE, Roberts AB (2004) Smad-binding defective mutant of TGF-β type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 64:4523–4530

    PubMed  CAS  Google Scholar 

  69. Tian F, DaCosta BS, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB (2003) Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 63:8284–8292

    PubMed  CAS  Google Scholar 

  70. Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM (2003) TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112:1116–1124

    PubMed  CAS  Google Scholar 

  71. Anzano MA, Roberts AB, De Larco JE, Wakefield LM, Assoian RK, Roche NS, Smith JM, Lazarus JE, Sporn MB (1985) Increased secretion of type β transforming growth factor accompanies viral transformation of cells. Mol Cell Biol 5:242–247

    PubMed  CAS  Google Scholar 

  72. Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH, Moody SE, Chodosh LA, Arteaga CL (2004) Conditional overexpression of active TGF-β1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64:9002–9011

    PubMed  CAS  Google Scholar 

  73. Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, Akhurst RJ (1996) TGF-β1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542

    PubMed  CAS  Google Scholar 

  74. Fowlis DJ, Cui W, Johnson SA, Balmain A, Akhurst RJ (1996) Altered epidermal cell growth control in vivo by inducible expression of TGF-β1 in the skin of transgenic mice. Cell Growth Differ 7:679–687

    PubMed  CAS  Google Scholar 

  75. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse TGF-β1 gene results in multifocal inflammatory disease. Nature 359:693–699

    PubMed  CAS  Google Scholar 

  76. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) TGF-β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90:770–774

    PubMed  CAS  Google Scholar 

  77. Christ M, McCartney-Francis NL, Kulkarni AB, Ward JM, Mizel DE, Mackall CL, Gress RE, Hines KL, Tian H, Karlsson S et al (1994) Immune dysregulation in TGF-β1-deficient mice. J Immunol 153:1936–1946

    PubMed  CAS  Google Scholar 

  78. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGF-β2 knockout mice have multiple developmental defects that are non-overlapping with other TGF-β knockout phenotypes. Development 124:2659–2670

    PubMed  CAS  Google Scholar 

  79. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11:415–421

    PubMed  CAS  Google Scholar 

  80. Oshima M, Oshima H, Taketo MM (1996) TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179:297–302

    PubMed  CAS  Google Scholar 

  81. Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P, Xu X, ten Dijke P, Mummery CL, Karlsson S (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J 20:1663–1673

    PubMed  CAS  Google Scholar 

  82. Kuruvilla AP, Shah R, Hochwald GM, Liggitt HD, Palladino MA, Thorbecke GJ (1991) Protective effect of TGF-β1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci U S A 88:2918–2921

    PubMed  CAS  Google Scholar 

  83. Goey H, Keller JR, Back T, Longo DL, Ruscetti FW, Wiltrout RH (1989) Inhibition of early murine hemopoietic progenitor cell proliferation after in vivo locoregional administration of TGF-β1. J Immunol 143:877–880

    PubMed  CAS  Google Scholar 

  84. Bartlett WC, Purchio A, Fell HP, Noelle RJ (1991) Cognate interactions between helper T cells and B cells. VI. TGF-β inhibits B cell activation and antigen-specific, physical interactions between Th and B cells. Lymphokine Cytokine Res 10:177–183

    PubMed  CAS  Google Scholar 

  85. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS (1986) Production of TGF-β by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 163:1037–1050

    PubMed  CAS  Google Scholar 

  86. Langlois D, Hneino M, Bouazza L, Parlakian A, Sasaki T, Bricca G, Li JY (2010) Conditional inactivation of TGF-β type II receptor in smooth muscle cells and epicardium causes lethal aortic and cardiac defects. Transgenic Res 19:1069–1082

    PubMed  CAS  Google Scholar 

  87. Seo HS, Serra R (2009) Tgfbr2 is required for development of the skull vault. Dev Biol 334:481–490

    PubMed  CAS  Google Scholar 

  88. Ito Y, Yeo JY, Chytil A, Han J, Bringas P Jr, Nakajima A, Shuler CF, Moses HL, Chai Y (2003) Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 130:5269–5280

    PubMed  CAS  Google Scholar 

  89. Bierie B, Gorska AE, Stover DG, Moses HL (2009) TGF-β promotes cell death and suppresses lactation during the second stage of mammary involution. J Cell Physiol 219:57–68

    PubMed  CAS  Google Scholar 

  90. Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA (2010) Dermal TGF-β responsiveness mediates wound contraction and epithelial closure. Am J Pathol 176:98–107

    PubMed  CAS  Google Scholar 

  91. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    PubMed  CAS  Google Scholar 

  92. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL (2005) Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene 24:5053–5068

    PubMed  CAS  Google Scholar 

  93. Bhowmick NA, Moses HL (2005) Tumor-stroma interactions. Curr Opin Genet Dev 15:97–101

    PubMed  CAS  Google Scholar 

  94. Bierie B, Moses HL (2006) Tumour microenvironment: TGF-β: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    PubMed  CAS  Google Scholar 

  95. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF-β signaling in mammary ­carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    PubMed  CAS  Google Scholar 

  96. Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M, Wolfraim L, Hong S, Mushinski E, Potter M, Kim SJ, Fu XY, Deng C, Letterio JJ (2006) Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441:1015–1019

    PubMed  CAS  Google Scholar 

  97. Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM, Kulkarni AB (2009) Progressive tumor formation in mice with conditional deletion of TGF-β signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res 69:5918–5926

    PubMed  CAS  Google Scholar 

  98. Zeng Q, Phukan S, Xu Y, Sadim M, Rosman DS, Pennison M, Liao J, Yang GY, Huang CC, Valle L, Di Cristofano A, de la Chapelle A, Pasche B (2009) Tgfbr1 haploinsufficiency is a potent modifier of colorectal cancer development. Cancer Res 69:678–686

    PubMed  CAS  Google Scholar 

  99. Weaver VM, Fischer AH, Peterson OW, Bissell MJ (1996) The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem Cell Biol 74:833–851

    PubMed  CAS  Google Scholar 

  100. Benton G, George J, Kleinman HK, Arnaoutova IP (2009) Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol 221:18–25

    PubMed  CAS  Google Scholar 

  101. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-Hoff MH, Petersen OW, Gray JW, Bissell MJ (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96

    PubMed  CAS  Google Scholar 

  102. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    PubMed  CAS  Google Scholar 

  103. Erler JT, Weaver VM (2009) Three-dimensional context regulation of metastasis. Clin Exp Metastasis 26:35–49

    PubMed  Google Scholar 

  104. Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9:325–342

    PubMed  Google Scholar 

  105. Turley EA, Veiseh M, Radisky DC, Bissell MJ (2008) Mechanisms of disease: epithelial-mesenchymal transition–does cellular plasticity fuel neoplastic progression? Nat Clin Pract Oncol 5:280–290

    PubMed  CAS  Google Scholar 

  106. Tian M, Schiemann WP (2009) Preclinical efficacy of cystatin C to target the oncogenic activity of TGF-β in breast cancer. Transl Oncol 2:174–183

    PubMed  Google Scholar 

  107. Bissell MJ (2007) Modelling molecular mechanisms of breast cancer and invasion: lessons from the normal gland. Biochem Soc Trans 35:18–22

    PubMed  CAS  Google Scholar 

  108. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72:3585–3589

    PubMed  CAS  Google Scholar 

  109. Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L, Jaenisch R (2004) Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 18:1875–1885

    PubMed  CAS  Google Scholar 

  110. Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23

    PubMed  CAS  Google Scholar 

  111. Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ (1985) Wounding and its role in RSV-mediated tumor formation. Science 230:676–678

    PubMed  CAS  Google Scholar 

  112. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    PubMed  CAS  Google Scholar 

  113. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    PubMed  CAS  Google Scholar 

  114. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    PubMed  CAS  Google Scholar 

  115. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    PubMed  CAS  Google Scholar 

  116. Erler JT, Giaccia AJ (2006) Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66:10238–10241

    PubMed  CAS  Google Scholar 

  117. Sion AM, Figg WD (2006) Lysyl oxidase (LOX) and hypoxia-induced metastases. Cancer Biol Ther 5:909–911

    PubMed  CAS  Google Scholar 

  118. Payne SL, Hendrix MJ, Kirschmann DA (2007) Paradoxical roles for lysyl oxidases in cancer–a prospect. J Cell Biochem 101:1338–1354

    PubMed  CAS  Google Scholar 

  119. Le QT, Harris J, Magliocco AM, Kong CS, Diaz R, Shin B, Cao H, Trotti A, Erler JT, Chung CH, Dicker A, Pajak TF, Giaccia AJ, Ang KK (2009) Validation of lysyl oxidase as a prognostic marker for metastasis and survival in head and neck squamous cell carcinoma: Radiation Therapy Oncology Group trial 90–03. J Clin Oncol 27:4281–4286

    PubMed  CAS  Google Scholar 

  120. Taylor MA, Amin J, Kirschmann DA and Schiemann WP (2011). Lysyl oxidase and hydrogen peroxide promote oncogenic signaling by transforming growth factor-b in mammary epithelial cells. (submitted)

    Google Scholar 

  121. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS (2009) Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res 69:9498–9506

    PubMed  CAS  Google Scholar 

  122. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029

    PubMed  CAS  Google Scholar 

  123. Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE, Condeelis JS (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67:3505–3511

    PubMed  CAS  Google Scholar 

  124. Roussos ET, Keckesova Z, Haley JD, Epstein DM, Weinberg RA, Condeelis JS (2010) AACR Special Conference on epithelial-mesenchymal transition and cancer progression and treatment. Cancer Res 70:7360–7364

    PubMed  CAS  Google Scholar 

  125. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL (2001) TGF-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36

    PubMed  CAS  Google Scholar 

  126. Kim W, Seok Kang Y, Soo Kim J, Shin NY, Hanks SK, Song WK (2008) The integrin-coupled signaling adaptor p130Cas suppresses Smad3 function in TGF-β signaling. Mol Biol Cell 19:2135–2146

    PubMed  CAS  Google Scholar 

  127. Cabodi S, Tinnirello A, Di Stefano P, Bisaro B, Ambrosino E, Castellano I, Sapino A, Arisio R, Cavallo F, Forni G, Glukhova M, Silengo L, Altruda F, Turco E, Tarone G, Defilippi P (2006) p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-Neu oncogene-dependent breast tumorigenesis. Cancer Res 66:4672–4680

    PubMed  CAS  Google Scholar 

  128. Lee YH, Albig AR, Regner M, Schiemann BJ, Schiemann WP (2008) Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-β in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis 29:2243–2251

    PubMed  CAS  Google Scholar 

  129. Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, Blackman BR, Tschumperlin DJ, Parsons JT (2010) Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One 5:e12905

    PubMed  Google Scholar 

  130. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179

    PubMed  Google Scholar 

  131. Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J Cell Biol 179:1311–1323

    PubMed  CAS  Google Scholar 

  132. Folkman J (1985). Angiogenesis and its inhibitors. Important Adv Oncol, 42–62

    Google Scholar 

  133. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    PubMed  CAS  Google Scholar 

  134. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    PubMed  CAS  Google Scholar 

  135. Lester RD, Jo M, Montel V, Takimoto S, Gonias SL (2007) uPAR induces epithelial ­mesenchymal transition in hypoxic breast cancer cells. J Cell Biol 178:425–436

    PubMed  CAS  Google Scholar 

  136. Dunn LK, Mohammad KS, Fournier PG, McKenna CR, Davis HW, Niewolna M, Peng XH, Chirgwin JM, Guise TA (2009) Hypoxia and TGF-β drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One 4:e6896

    PubMed  Google Scholar 

  137. Heikkinen PT, Nummela M, Jokilehto T, Grenman R, Kahari VM, Jaakkola PM (2010) Hypoxic conversion of SMAD7 function from an inhibitor into a promoter of cell invasion. Cancer Res 70:5984–5993

    PubMed  CAS  Google Scholar 

  138. Xu X, Han J, Ito Y, Bringas P Jr, Deng C, Chai Y (2008) Ectodermal Smad4 and p38 MAPK are functionally redundant in mediating TGF-β/BMP signaling during tooth and palate ­development. Dev Cell 15:322–329

    PubMed  CAS  Google Scholar 

  139. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102

    PubMed  CAS  Google Scholar 

  140. Viloria-Petit AM, David L, Jia JY, Erdemir T, Bane AL, Pinnaduwage D, Roncari L, Narimatsu M, Bose R, Moffat J, Wong JW, Kerbel RS, O’Malley FP, Andrulis IL, Wrana JL (2009) A role for the TGF-β-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci U S A 106:14028–14033

    PubMed  CAS  Google Scholar 

  141. Sodunke TR, Turner KK, Caldwell SA, McBride KW, Reginato MJ, Noh HM (2007) Micropatterns of Matrigel for three-dimensional epithelial cultures. Biomaterials 28:4006–4016

    PubMed  CAS  Google Scholar 

  142. Korpal M, Yan J, Lu X, Xu S, Lerit DA, Kang Y (2009) Imaging TGF-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 15:960–966

    PubMed  CAS  Google Scholar 

  143. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E (2009) Localized and ­reversible TGF-β signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11:1287–1296

    PubMed  CAS  Google Scholar 

  144. Giampieri S, Pinner S, Sahai E (2010) Intravital imaging illuminates TGF-β signaling switches during metastasis. Cancer Res 70:3435–3439

    PubMed  CAS  Google Scholar 

  145. Fidler IJ (1970) Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782

    PubMed  CAS  Google Scholar 

  146. Wendt MK, Cooper AN, Dwinell MB (2008) Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells. Oncogene 27:1461–1471

    PubMed  CAS  Google Scholar 

  147. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    PubMed  CAS  Google Scholar 

  148. Nagaprashantha LD, Vatsyayan R, Lelsani PC, Awasthi S, Singhal SS (2011) The sensors and regulators of cell-matrix surveillance in anoikis resistance of tumors. Int J Cancer 128:743–752

    PubMed  CAS  Google Scholar 

  149. Debnath J (2008) Detachment-induced autophagy during anoikis and lumen formation in epithelial acini. Autophagy 4:351–353

    PubMed  Google Scholar 

  150. Shibue T, Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A 106:10290–10295

    PubMed  CAS  Google Scholar 

  151. Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, Liu ZY, Costes SV, Cho EH, Lockett S, Khanna C, Chambers AF, Green JE (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68:6241–6250

    PubMed  CAS  Google Scholar 

  152. Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, Webster JD, Hoover S, Simpson RM, Gauldie J, Green JE (2010) Metastatic growth from dormant cells induced by a Col-I-enriched fibrotic environment. Cancer Res 70:5706–5716

    PubMed  CAS  Google Scholar 

  153. Weigelt B, Bissell MJ (2008) Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18:311–321

    PubMed  CAS  Google Scholar 

  154. Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, Todorova-Manova K, Gerald WL, Brogi E, Benezra R, Massague J (2007) ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci U S A 104:19506–19511

    PubMed  CAS  Google Scholar 

  155. Pathi SP, Kowalczewski C, Tadipatri R, Fischbach C (2010) A novel 3-D mineralized tumor model to study breast cancer bone metastasis. PLoS One 5:e8849

    PubMed  Google Scholar 

  156. Fong YC, Maa MC, Tsai FJ, Chen WC, Lin JG, Jeng LB, Yang RS, Fu WM, Tang CH (2008) Osteoblast-derived TGF-β stimulates IL-8 release through AP-1 and NF-κB in human cancer cells. J Bone Miner Res 23:961–970

    PubMed  CAS  Google Scholar 

  157. Mohammad KS, Javelaud D, Fournier PG, Niewolna M, McKenna CR, Peng XH, Duong V, Dunn LK, Mauviel A, Guise TA (2011) The TGF-β receptor I kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Res 71(1):175–184

    PubMed  CAS  Google Scholar 

  158. Hu Z, Zhang Z, Guise T, Seth P (2010) Systemic delivery of an oncolytic adenovirus expressing soluble TGF-β receptor II-Fc fusion protein can inhibit breast cancer bone metastasis in a mouse model. Hum Gene Ther 21:1623–1629

    PubMed  CAS  Google Scholar 

  159. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massague J (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A 102:13909–13914

    PubMed  CAS  Google Scholar 

  160. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA (1999) TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Schiemann Laboratory for critical comments and reading of the manuscript. W.P.S. was supported by grants from the National Institutes of Health (CA129359), the Komen Foundation (BCTR0706967), the Department of Defense (BC084651); and the Case Comprehensive Cancer Center and the University Hospitals Seidman Cancer Center. M.K.W. was supported by the American Cancer Society (PF-09-120-01-CS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Schiemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wendt, M.K., Schiemann, W.P. (2011). Regulation of TGF-β Signaling and Metastatic Progression by Tumor Microenvironments. In: Fatatis, A. (eds) Signaling Pathways and Molecular Mediators in Metastasis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2558-4_5

Download citation

Publish with us

Policies and ethics