Skip to main content

The Influence of Metastatic Breast Cancer on the Bone Microenvironment

  • Chapter
  • First Online:
Signaling Pathways and Molecular Mediators in Metastasis

Abstract

The bone is a welcoming microenvironment for metastases from many cancers including breast cancer. Cancer cells can easily enter the bone marrow cavity due to its vasculature; there they are exposed to the many growth factors and cytokines that are part of the continuous bone remodeling process. In addition, the cancer cells interact with the resident bone cells, osteoblasts and osteoclasts, to modify the microenvironment resulting in cancer cell colonization and eventually bone degradation. Osteoclasts release numerous molecules such as insulin-like growth factors (IGFs) and transforming growth factor beta (TGF-β) from the matrix. Osteoblasts undergo an inflammatory stress response and produce a set of cytokines that are osteoclastogenic. These cytokines include IL-6, IL-8 (murine homologue MIP-2), VEGF, MCP-1, MIG and LIX. Several of these molecules also are secreted by cancer cells. One notable exception is MCP-1 which is made only in small quantities. During the course of metastasis, osteoblast differentiation is suppressed and the prevalence of osteoblast apopotosis increases. Thus the bone microenvironment is modified by the interaction of cancer cells with both osteoblasts and osteoclasts. Bone loss results from hyperactive osteoclasts and hypoactive osteoblasts. This chapter summarizes the results of studies of osteoblast and breast cancer cell interactions that have been performed in cell culture, in mice and in a novel three dimensional culture bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COX-2:

Cyclooxygenase-2

DAB:

3,3′- Diaminobenzidine

ECM:

Extracellular matrix

G-CSF:

Granulocyte-colony stimulating factor

GM-CSF:

Granulocyte macrophage-colony stimulating factor

GFP:

Green fluorescent protein

GRO-a:

Growth related oncogene alpha

IFN:

Interferon

IGFs:

Insulin-like growth factors

IL:

Interleukin

KC:

Keratinocyte chemoattractant

LIX:

LPS induced CXC chemokine

M-CSF:

Macrophage-colony stimulating factor

MCP-1:

Monocyte chemotactic protein 1

MIG:

Monokine induced by interferon gamma

MIP-2:

Macrophage inflammatory protein

MMP:

Matrix metalloproteinase

OPG:

Osteoprotogerin

PDGF:

Platelet derived growth factor

PGE:

Prostaglandin

PTHrP:

Parathyroid hormone related peptide

RANKL:

Receptor activator of NFκB ligand

TGF-β:

Transforming growth factor beta

TNF:

Tumor necrosis factor

TRAP:

Tartrate resistant acid phosphatase

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

VEGF:

Vasular endothelial growth factor

References

  1. Rubens RD, Mundy GR (2000) Cancer and the skeleton. Martin Dunitz, London

    Google Scholar 

  2. Mastro AM, Gay CV, Welch DR (2003) The skeleton as a unique environment for breast cancer cells. Clin Exp Metastasis 20:275–284

    Article  PubMed  CAS  Google Scholar 

  3. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27:41–55

    Article  PubMed  Google Scholar 

  4. Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782

    PubMed  CAS  Google Scholar 

  5. Phadke PA, Mercer RR, Harms JF et al (2006) Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res 12:1431–1440

    Article  PubMed  Google Scholar 

  6. Nash KT, Phadke PA, Navenot JM et al (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99:309–321

    Article  PubMed  CAS  Google Scholar 

  7. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  PubMed  CAS  Google Scholar 

  8. Fritz E, Glant T, Vermes C et al (2005) Chemokine gene activation in human bone marrow-derived osteoblasts following exposure to particulate wear debris. J Biomed Mater Res A 77:192–201

    Google Scholar 

  9. Kinder M, Chislock E, Bussard KM et al (2008) Metastatic breast cancer induces an osteoblast inflammatory response. Exp Cell Res 314:173–183

    Article  PubMed  CAS  Google Scholar 

  10. Marriott I (2004) Osteoblast responses to bacterial pathogens: a previously unappreciated role for bone-forming cells in host defense and disease progression. Immunol Res 30:291–308

    Article  PubMed  CAS  Google Scholar 

  11. Rodan GA (2003) The development and function of the skeleton and bone metastases. Cancer 97:726–732

    Article  PubMed  Google Scholar 

  12. Fritz EA, Glant TT, Vermes C et al (2002) Titanium particles induce the immediate early stress responsive chemokines IL-8 and MCP-1 in osteoblasts. J Orthop Res 20:490–498

    Article  PubMed  CAS  Google Scholar 

  13. Mercer R, Miyasaka C, Mastro AM (2004) Metastatic breast cancer cells suppress osteoblast adhesion and differentiation. Clin Exp Metastasis 21:427–435

    Article  PubMed  CAS  Google Scholar 

  14. Casimiro S, Guise TA, Chirgwin J (2009) The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 310:71–81

    Article  PubMed  CAS  Google Scholar 

  15. Guise TA, Yin JJ, Taylor SD et al (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast-cancer-mediated osteolysis. J Clin Invest 98:1544–1549

    Article  PubMed  CAS  Google Scholar 

  16. Lipton A (2010) Bone continuum of cancer. Am J Clin Oncol 33:S1–S7

    Article  PubMed  CAS  Google Scholar 

  17. Coleman R, Gnant M (2009) New results from the use of bisphosphonates in cancer patients. Curr Opin Support Palliat Care 3:213–218

    Article  PubMed  Google Scholar 

  18. Mastro AM, Gay CV, Welch DR et al (2004) Breast cancer cells induce osteoblast apoptosis: a possible contributor to bone degradation. J Cell Biochem 91:265–276

    Article  PubMed  CAS  Google Scholar 

  19. Phadke PA, Mercer RR, Harms JF, Jia Y, Kappes JC, Frost AR, Jewell JL, Bussard KM, Nelson S, Moore C, Gay CV, Mastro AM, Welch DR (2006) Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res 12:1431–1440

    Article  PubMed  Google Scholar 

  20. Bendre M, Gaddy-Kurten D, Foote-Mon T et al (2002) Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res 62:5571–5579

    PubMed  CAS  Google Scholar 

  21. Orr FW, Wang HH, Lafrenie RM et al (2000) Interactions between cancer cells and the endothelium in metastasis. J Pathol 190:310–329

    Article  PubMed  CAS  Google Scholar 

  22. Mercer RM, Mastro AM (2005) Cytokines secreted by bone-metastatic breast cancer cells alter the expression pattern of f-actin and reduce focal adhesion plaques in osteoblasts through PI3K. Exp Cell Res 310:270–281

    Article  PubMed  CAS  Google Scholar 

  23. Bussard KM, Venzon DJ, Mastro AM (2010) Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. J Cell Biochem 111(5):1138–1148

    Article  PubMed  CAS  Google Scholar 

  24. Bussard KM, Okita N, Sharkey N et al (2010) Localization of osteoblast inflammatory cytokines MCP-1 and VEGF to the matrix of the trabecula of the femur, a target area for metastatic breast cancer cell colonization. Clin Exp Metastasis 27:331–340

    Article  PubMed  CAS  Google Scholar 

  25. Yoneda T, Williams PJ, Hiraga T et al (2001) A bone-seeking clone exhibits different biological properties from the MDA-MD-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16:1486–1495

    Article  PubMed  CAS  Google Scholar 

  26. Sosnoski DM, Krishnan V, Kraemer WJ et al (in press) Changes in cytokines of the bone microenvironment during breast cancer metastasis. Int J Breast Cancer

    Article  PubMed  CAS  Google Scholar 

  27. Meehan WJ, Welch DR (2003) Breast cancer metastasis suppressor 1: update. Clin Exp Metastasis 20:45–50

    Article  PubMed  CAS  Google Scholar 

  28. Kurihara N, Bertolini D, Suda T et al (1990) IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol 144:4226–4230

    PubMed  CAS  Google Scholar 

  29. Bischoff D, Zhu J, Makhijani N et al (2005) KC chemokine expression by TGF-beta in C3H10T1/2 cells induced towards osteoblasts. Biochem Biophys Res Commun 326:364–370

    Article  PubMed  CAS  Google Scholar 

  30. Fitzgerald K, O’Neill L, Gearing A et al (2001) The cytokine facts book. Academic, New York

    Google Scholar 

  31. Schwartz GN, Liao F, Gress RE et al (1997) Suppressive effects of recombinant human monokine induced by IFN-gamma (rHuMig) chemokine on the number of committed and primitive hemopoietic progenitors in liquid cultures of CD34+ human bone marrow cells. J Immunol 159:895–904

    PubMed  CAS  Google Scholar 

  32. Abousleiman RI, Sikavitsas VI, Fisher JP (2007) Bioreactors for tissues of the musculoskeletal system. Tissue engineering, vol 585. J. Fisher, Springer US, pp 243–259

    Article  Google Scholar 

  33. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22:80–86

    Article  PubMed  CAS  Google Scholar 

  34. Maxson S, Orr D, Burg KJL et al (2011) Bioreactors for tissue engineering. Tissue engineering, vol 1. C.V. Suschek and N. Pallua, Springer Berlin Heidelberg, pp 179–197

    Google Scholar 

  35. Vogler EA (1989) A compartmentalized device for the culture of animal cells. Biomater Artif Cells Artif Organs 17:597–610

    PubMed  CAS  Google Scholar 

  36. Krishnan V, Shuman L, Sosnoski D et al (2010) Comparison of metastatic breast cancer colonization of osteoblastic tissue grown in two- and three-dimensional tissue culture. J Cell Physiol in press

    Google Scholar 

  37. Dhurjati R, Liu X, Gay CV et al (2006) Extended-term culture of bone cells in a compartmentalized bioreactor. Tissue Eng 12:3045–3054

    Article  PubMed  CAS  Google Scholar 

  38. Krishnan V, Dhurjati R, Vogler EA et al (2010) Osteogenesis in vitro: from pre-osteoblasts to osteocytes. In Vitro Cell Dev Biol Anim 97:11511–11515

    Google Scholar 

  39. Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited: jcb.200807195

    Google Scholar 

  40. Rusciano D, Burger M (2000) In vivo cancer metastasis assays. Cancer metastasis: experimental approaches, vol 29. D. Welch, Elsevier, Amsterdam, pp 207–242

    Google Scholar 

  41. Dhurjati R, Krishnan V, Shuman LA et al (2008) Metastatic breast cancer cells colonize and degrade three-dimensional osteoblastic tissue in vitro. Clin Exp Metastasis 25:741–752

    Article  PubMed  CAS  Google Scholar 

  42. Page DL, Anderson TJ (1987) Diagnostic histopathology of the breast. D.L. Page and T.J. Anderson, Churchill-Livingstone, Edinburgh, UK, pp 219–222

    Google Scholar 

  43. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Article  PubMed  CAS  Google Scholar 

  44. Friedl P, Wolf K (2008) Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 68:7247–7249

    Article  PubMed  CAS  Google Scholar 

  45. Mastro AM, Vogler EA (2009) A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res 69:4097–4100

    Article  PubMed  CAS  Google Scholar 

  46. Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5:21–28

    Article  PubMed  CAS  Google Scholar 

  47. Patten RM, Shuman WP, Teefey S (1990) Metastases from malignant melanoma to the axial skeleton: a CT study of frequency and appearance. AJR Am J Roentgenol 155:109–112

    PubMed  CAS  Google Scholar 

  48. Mundy GR, Raisz LG, Cooper RA et al (1974) Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med 291:1041–1046

    Article  PubMed  CAS  Google Scholar 

  49. Bataille R, Chappard D, Marcelli C et al (1991) Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J Clin Invest 88:62–66

    Article  PubMed  CAS  Google Scholar 

  50. Hay ED (1991) Cell biology of extracellular matrix. Plenum Press, New York

    Book  Google Scholar 

  51. Wall SJ, Jiang Y, Muschel RJ et al (2003) Meeting report: proteases extracellular matrix, and cancer: an AACR special conference in cancer research. Cancer Res 63:4750–4755

    PubMed  CAS  Google Scholar 

  52. Robert L (2002) Cell-matrix interactions in cancer spreading–effect of aging: an introduction. Semin Cancer Biol 12:157–163

    Article  PubMed  CAS  Google Scholar 

  53. Alexander NR, Branch KM, Parekh A et al (2008) Extracellular matrix rigidity promotes invadopodia activity. Current biology: CB 18:1295–1299

    Article  PubMed  CAS  Google Scholar 

  54. Toh YC, Zhang C, Zhang J et al (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7:302–309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported through grants from the U.S. Army Medical and Materiel Command Breast Cancer Research Program (WX81XWH-06-1-0432 and WX81XWH-0801-0448), The Susan G. Koman Breast Cancer Foundation (BCTR 0601044), with help from The National Foundation for Cancer Research, and The Penn State Hershey Cancer Institute. We would like to thank Erwin Vogler, Carol Gay, Ravi Dhurjati, and Laurie Shuman for their work with various aspects of the projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Mastro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mastro, A.M., Sosnoski, D.M., Krishnan, V., Bussard, K.M. (2011). The Influence of Metastatic Breast Cancer on the Bone Microenvironment. In: Fatatis, A. (eds) Signaling Pathways and Molecular Mediators in Metastasis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2558-4_15

Download citation

Publish with us

Policies and ethics