Skip to main content

Imprinting Disorders of Early Childhood

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

Imprinted genes are exceptional in that one allele is silenced (imprinted) in a parent of origin specific manner, making the two parental alleles functionally different. Imprinted genes are known to play a vital role in fetal growth and normal metabolism and most of the medical conditions caused by aberrant imprinting result in problems with growth, neurodevelopment and glycaemic control. There are eight known human disorders; Beckwith Wiedemann syndrome (fetal overgrowth, umbilical abnormalities and macroglossia), Silver Russell Syndrome (poor fetal and post natal growth and short stature), Prader Willi syndrome (hypotonia, developmental delay, excessive appetite and obesity), Angelman syndrome (severe developmental delay, no speech and ataxia), Transient Neonatal Diabetes (neonatal diabetes and low birth weight), Temple syndrome (hypotonia short stature and early puberty), Wang syndrome (hypotonia, developmental delay and small thorax) and Pseudohypoparathyroidism type 1B (hypoparathyroidism). At any of the imprinted loci involved in these conditions, abnormal gene expression is due to three mechanisms: epigenetic loss or gain of DNA methylation within control regions, uniparental disomy and structural chromosome abnormalities. The known prevalence of each condition depends on the distinctiveness of symptoms and thus ease of diagnosis and the susceptibility of the different loci to genetic and epigenetic aberrations; the reasons for the difference in susceptibility at different loci is not yet known. This chapter describes the imprinted loci and the medical consequences of aberrant imprinted gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AS:

Angelman syndrome

BWS:

Beckwith Wiedemann syndrome

DMR:

Differentially methylated region

ICR:

Imprinting control region

PHP1B:

Pseudohypoparathyroidism type 1B

PWS:

Prader Willi syndrome

SDS:

Standard deviation scores

SRS:

Silver Russell syndrome

TND:

Transient Neonatal Diabetes

TS:

Temple syndrome

WS:

Wang syndrome

UPD:

Uniparental disomy

References

  1. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2(1):21–32

    Article  PubMed  CAS  Google Scholar 

  2. Haig D (2004) Genomic imprinting and kinship: how good is the evidence? Annu Rev Genet 38:553–585

    Article  PubMed  CAS  Google Scholar 

  3. Steffenburg S, Gillberg CL, Steffenburg U, Lyllerman M (1996) Autism in Angelman syndrome: a population-based study. Pediat Neurol 14(2):131–136

    Article  PubMed  CAS  Google Scholar 

  4. Clayton-Smith J, Pembrey ME (1992) Angelman syndrome. J Med Genet 29(6):412–415

    Article  PubMed  CAS  Google Scholar 

  5. Temple IK, Gardner RJ, Mackay DJG, Barber JCK, Robinson DO, Shield JPH (2000) Transient neonatal diabetes mellitus: widening our understanding of the aetiopathogenesis of diabetes. Diabetes 49(8):1359–1366

    Article  PubMed  CAS  Google Scholar 

  6. Mackay DJG, Callaway JLA, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P, Firth HV, Goodship JA, Haemers AP, Hahnemann JMD, Kordonouri O, Masoud AF, Oestergaard E, Storr J, Ellard S, Hattersley AT, Robinson DO, Temple IK (2008) Hypomethylation of multiple imprinted loci in patients with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40(8):949–951

    Article  PubMed  CAS  Google Scholar 

  7. Gicquel C, Rossignol S, Cabrol S, Houang M, Steunou V, Barbu V, Danton F, Thibaud N, Le Merrer M, Burglen L, Bertrand AM, Netchine I, Le Bouc Y (2005) Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet 37(9):1003–1007

    Article  PubMed  CAS  Google Scholar 

  8. Weksberg R, Shuman C, Beckwith JB (2010) Beckwith-Wiedemann syndrome. Eur J Hum Genet 18(1):8–14

    Article  PubMed  Google Scholar 

  9. Tan TY, Amor DJ (2006) Tumour surveillance in Beckwith-Wiedemann syndrome and hemihyperplasia: a critical review of the evidence and suggested guidelines for local practice. J Paediatr Child Health 42(9):486–490

    Article  PubMed  Google Scholar 

  10. Scott RH, Douglas J, Baskcomb L, Huxter N, Barker K, Hanks S, Craft A, Gerrard M, Kohler JA, Levitt GA, Picton S, Pizer B, Ronghe MD, Williams D, Factors Associated with Childhood Tumours (FACT) Collaboration, Cook JA, Pujol P, Maher ER, Birch JM, Stiller CA, Pritchard-Jones K, Rahman N (2008) Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet 40(11):1329–1334

    Article  PubMed  CAS  Google Scholar 

  11. Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, Bowdin SC, Riccio A, Sebastio G, Bliek J, Schofield PN, Reik W, Macdonald F, Maher ER (2005) Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet 13(9):1025–1032

    Article  PubMed  CAS  Google Scholar 

  12. Wakeling EL, Abu Amero S, Alders M, Bliek J, Forsythe E, Kumar S, Lim DH, MacDonald F, Mackay DJ, Maher ER, Moore GE, Poole RL, Price SM, Tangeraas T, Turner CLS, Van Haelst MM, Willoughby C, Temple IK, Cobben JM (2010) Epigenotype-phenotype correlations in Silver-Russell syndrome. J Med Genet 47(11):760–768

    Article  PubMed  CAS  Google Scholar 

  13. Price SM, Stanhope R, Garrett C, Preece MA, Trembath RC (1999) The spectrum of Silver-Russell syndrome: a clinical and molecular genetic study and new diagnostic criteria. J Med Genet 36(11):837–842

    PubMed  CAS  Google Scholar 

  14. Binder G, Seidel AK, Martin DD, Schweizer R, Schwarze CP, Wollmann HA, Eggermann T, Ranke MB (2008) The endocrine phenotype in Silver-Russell syndrome is defined by the underlying epigenetic alteration. J Clin Endocrinol Metab 93(4):1402–1407

    Article  PubMed  CAS  Google Scholar 

  15. Yamazawa K, Kagami M, Fukami M, Matsubara K, Ogata T (2008) Monozygotic female twins discordant for Silver-Russell syndrome and hypomethylation of the H19-DMR. J Hum Genet 53(10):950–955

    Article  PubMed  Google Scholar 

  16. Duncan PA, Hall JG, Shapiro LR, Vibert BK (1990) Three-generation dominant transmission of the Silver-Russell syndrome. Am J Med Genet 35(2):245–250

    Article  PubMed  CAS  Google Scholar 

  17. Eggermann T, Meyer E, Obermann C, Heil I, Schüler H, Ranke MB, Eggermann K, Wollmann HA (2005) Is maternal duplication of 11p15 associated with Silver-Russell syndrome? J Med Genet 42(5):e26

    Article  PubMed  CAS  Google Scholar 

  18. Bliek J, Terhal P, van den Bogaard MJ, Maas S, Hamel B, Salieb-Beugelaar G, Simon M, Letteboer T, van der Smagt J, Kroes H, Mannens M (2006) Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but also isolated asymmetry or an SRS-like phenotype. Am J Hum Genet 78(4):604–614

    Article  PubMed  CAS  Google Scholar 

  19. Bruce S, Hannula-Jouppi K, Puoskari M, Fransson I, Simola KO, Lipsanen-Nyman M, Kere J (2009) Submicroscopic genomic alterations in Silver-Russell syndrome and Silver-Russell-like patients. J Med Genet 47(12):816–822

    Article  PubMed  Google Scholar 

  20. Horike S, Ferreira JC, Meguro-Horike M, Choufani S, Smith AC, Shuman C, Meschino W, Chitayat D, Zackai E, Scherer SW, Weksberg R (2009) Screening of DNA methylation at the H19 promoter or the distal region of its ICR1 ensures efficient detection of chromosome 11p15 epimutations in Russell-Silver syndrome. Am J Med Genet A 149A(11):2415–2423

    Article  PubMed  CAS  Google Scholar 

  21. Schönherr N, Meyer E, Roos A, Schmidt A, Wollmann HA, Eggermann T (2007) The centromeric 11p15 imprinting centre is also involved in Silver-Russell syndrome. J Med Genet 44(1):59–63

    Article  PubMed  Google Scholar 

  22. Kotzot D, Schmitt S, Bernasconi F, Robinson WP, Lurie IW, Ilyina H, Méhes K, Hamel BC, Otten BJ, Hergersberg M et al (1995) Uniparental disomy 7 in Silver-Russell syndrome and primordial growth retardation. Hum Mol Genet 4(4):583–587

    Article  PubMed  CAS  Google Scholar 

  23. Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore GE (2008) The genetic aetiology of Silver-Russell syndrome. J Med Genet 45(4):193–199

    Article  PubMed  CAS  Google Scholar 

  24. Kotzot D (2008) Maternal uniparental disomy 7 and Silver-Russell syndrome – clinical update and comparison with other subgroups. Eur J Med Genet 51(5):444–451

    Article  PubMed  Google Scholar 

  25. Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B (1995) Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet 9(4):395–400

    Article  PubMed  CAS  Google Scholar 

  26. Ramsden SC, Clayton-Smith J, Birch R, Buiting K (2010) Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Med Genet 11:70

    Article  PubMed  Google Scholar 

  27. Williams CA, Angelman H, Clayton-Smith J, Driscoll DJ, Hendrickson JE, Knoll JH, Magenis RE, Schinzel A, Wagstaff J, Whidden EM et al (1995) Angelman syndrome: consensus for diagnostic criteria. Angelman Syndrome Foundation. Am J Med Genet 56(2):237–238

    Article  PubMed  CAS  Google Scholar 

  28. Fang P, Lev-Lehman E, Tsai TF, Matsuura T, Benton CS, Sutcliffe JS, Christian SL, Kubota T, Halley DJ, Meijers-Heijboer H, Langlois S, Graham JM Jr, Beuten J, Willems PJ, Ledbetter DH, Beaudet AL (1999) The spectrum of mutations in UBE3A causing Angelman syndrome. Hum Mol Genet 8(1):129–135

    Article  PubMed  CAS  Google Scholar 

  29. Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL (2008) The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 17(1):111–118

    Article  PubMed  CAS  Google Scholar 

  30. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK, Griffith EC, Waldon Z, Maehr R, Ploegh HL, Chowdhury S, Worley PF, Steen J, Greenberg ME (2010) The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140(5):704–716

    Article  PubMed  CAS  Google Scholar 

  31. Williams CA, Driscoll DJ, Dagli AI (2010) Clinical and genetic aspects of Angelman syndrome. Genet Med 12(7):385–395

    Article  PubMed  CAS  Google Scholar 

  32. Manipalviratn S, DeCherney A, Segars J (2009) Imprinting disorders and assisted reproductive technology. Fertil Steril 91(2):305–315

    Article  PubMed  CAS  Google Scholar 

  33. Gillessen-Kaesbach G, Demuth S, Thiele H, Theile U, Lich C, Horsthemke B (1999) A previously unrecognised phenotype characterised by obesity, muscular hypotonia, and ability to speak in patients with Angelman syndrome caused by an imprinting defect. Eur J Hum Genet 7(6):638–644

    Article  PubMed  CAS  Google Scholar 

  34. Lossie AC, Whitney MM, Amidon D, Dong HJ, Chen P, Theriaque D, Hutson A, Nicholls RD, Zori RT, Williams CA, Driscoll DJ (2001) Distinct phenotypes distinguish the molecular classes of Angelman syndrome. J Med Genet 38(12):834–845

    Article  PubMed  CAS  Google Scholar 

  35. Cassidy SB, Driscoll DJ (2009) Prader-Willi syndrome. Eur J Hum Genet 17(1):3–13

    Article  PubMed  CAS  Google Scholar 

  36. Mogul HR, Lee PD, Whitman BY, Zipf WB, Frey M, Myers S, Cahan M, Pinyerd B, Southren AL (2008) Growth hormone treatment of adults with Prader-Willi syndrome and growth hormone deficiency improves lean body mass, fractional body fat, and serum triiodothyronine without glucose impairment: results from the United States multicenter trial. J Clin Endocrinol Metab 93(4):1238–1245

    Article  PubMed  CAS  Google Scholar 

  37. Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008) Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40(6):719–721

    Article  PubMed  CAS  Google Scholar 

  38. Temple IK, Shield JP (2002) Transient neonatal diabetes, a disorder of imprinting. J Med Genet 39(12):872–875

    Article  PubMed  CAS  Google Scholar 

  39. Polak M, Cave H (2007) Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J Rare Dis 2:12

    Article  PubMed  Google Scholar 

  40. Ma D, Shield JP, Dean W, Leclerc I, Knauf C, Burcelin RR, Rutter GA, Kelsey G (2004) Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J Clin Invest 114((3):339–348

    PubMed  CAS  Google Scholar 

  41. Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC (2008) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15(4):547–557

    Article  PubMed  CAS  Google Scholar 

  42. Wang JC, Passage MB, Yen PH, Shapiro LJ, Mohandas TK (1991) Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier. Am J Hum Genet 48(6):1069–1074

    PubMed  CAS  Google Scholar 

  43. Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P (1991) Maternal uniparental disomy for chromosome 14. J Med Genet 28(8):511–514

    Article  PubMed  CAS  Google Scholar 

  44. Ogata TM, Kagami M, Ferguson-Smith AC (2008) Molecular mechanisms regulating phenotypic outcome in paternal and maternal uniparental disomy for chromosome 14. Epigenetics 3(4):181–187

    Article  PubMed  Google Scholar 

  45. Buiting K, Kanber D, Martín-Subero JI, Lieb W, Terhal P, Albrecht B, Purmann S, Gross S, Lich C, Siebert R, Horsthemke B, Gillessen-Kaesbach G (2008) Clinical features of maternal uniparental disomy 14 in patients with an epimutation and a deletion of the imprinted DLK1/GTL2 gene cluster. Hum Mutat 29(9):1141–1146

    Article  PubMed  CAS  Google Scholar 

  46. Kotzot D (2004) Maternal uniparental disomy 14 dissection of the phenotype with respect to rare autosomal recessively inherited traits, trisomy mosaicism, and genomic imprinting. Ann Genet 47(3):251–260

    Article  PubMed  Google Scholar 

  47. Mitter D, Buiting K, von Eggeling F, Kuechler A, Liehr T, Mau-Holzmann UA, Prott EC, Wieczorek D, Gillessen-Kaesbach G (2006) Is there a higher incidence of maternal uniparental disomy 14 [upd(14)mat]? Detection of 10 new patients by methylation-specific PCR. Am J Med Genet A 140(19):2039–2049

    PubMed  Google Scholar 

  48. Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, Yamamori S, Kishimoto H, Nakayama M, Tanaka Y, Matsuoka K, Takahashi T, Noguchi M, Tanaka Y, Masumoto K, Utsunomiya T, Kouzan H, Komatsu Y, Ohashi H, Kurosawa K, Kosaki K, Ferguson-Smith AC, Ishino F, Ogata T (2008) Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet 40(2):237–242

    Article  PubMed  CAS  Google Scholar 

  49. Temple IK, Shrubb V, Lever M, Bullman H, Mackay DJ (2007) Isolated imprinting mutation of the DLK1/GTL2 locus associated with a clinical presentation of maternal uniparental disomy of chromosome 14. J Med Genet 44(10):637–640

    Article  PubMed  CAS  Google Scholar 

  50. Wilson LC, Trembath RC (1994) Albright’s hereditary osteodystrophy. J Med Genet 31(10):779–784

    Article  PubMed  CAS  Google Scholar 

  51. Wilson LC (2006) Albright’s hereditary osteodystrophy. J Pediatr Endocrinol Metab 19(Suppl 2):671–673

    Article  PubMed  CAS  Google Scholar 

  52. Dekelbab BH, Aughton DJ, Levine MA (2009) Pseudohypoparathyroidism type 1A and morbid obesity in infancy. Endocr Pract 15(3):249–253

    PubMed  Google Scholar 

  53. Kelsey G (2009) Epigenetics and imprinted genes: insights from the imprinted Gnas locus. Horm Res 71(Suppl 2):22–29

    Article  PubMed  CAS  Google Scholar 

  54. Bastepe M (2008) The GNAS locus and pseudohypoparathyroidism. Adv Exp Med Biol 626:27–40

    Article  PubMed  CAS  Google Scholar 

  55. Bastepe M, Fröhlich LF, Linglart A, Abu-Zahra HS, Tojo K, Ward LM, Jüppner H (2005) Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat Genet 37(1):25–27

    PubMed  CAS  Google Scholar 

  56. Bastepe M, Lane AH, Juppner H (2001) Paternal uniparental isodisomy of chromosome 20q–and the resulting changes in GNAS1 methylation–as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet 68(5):1283–1289

    Article  PubMed  CAS  Google Scholar 

  57. Bastepe M, Pincus JE, Sugimoto T, Tojo K, Kanatani M, Azuma Y, Kruse K, Rosenbloom AL, Koshiyama H, Jüppner H (2001) Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B: evidence for a long-range regulatory element within the imprinted GNAS1 locus. Hum Mol Genet 10(12):1231–1241

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Karen Temple .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Temple, I.K., Clayton-Smith, J., Mackay, D.J.G. (2012). Imprinting Disorders of Early Childhood. In: Michels, K. (eds) Epigenetic Epidemiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2495-2_9

Download citation

Publish with us

Policies and ethics