Skip to main content

Epigenetic Epidemiology of Type 1 Diabetes

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

Type 1 diabetes (T1D) results from the immune-mediated destruction of insulin-secreting β-cells that reside in the pancreatic Islets of Langerhans. Genetic susceptibility is necessary but not sufficient for the development of autoimmune diabetes, indicating a key role for risk modification by environmental factors. Epigenetic mechanisms could mediate the effect of specific environmental factors and could therefore explain, at least in part, non-genetic susceptibility to Type 1 diabetes. Exposure to variable nutrition or infection in early life, including in utero experiences can modify T1D susceptibility, which may occur via epigenetic means. T1D is characterized by autoimmune destruction of pancreatic insulin-secreting β-cells and their aberrant development and function of β-cells; these pathogenic mechanisms are also subject to epigenetic regulation. Furthermore, the diabetic state, characterized by fluctuations in insulin and glucose, can influence genomic methylation profiles and gene expression, which can potentially impact susceptibility to co-morbidities of T1D. This chapter identifies potential epigenetic mechanisms that may modify T1D risk and describes study designs that can be implemented to determine the role played by epigenetics in disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AdoMet:

S-adenosylmethionine

AdoHcy:

S-adenosylhomocysteine

BMI:

Body mass index

CBS:

Cystathionine β-synthase

ChIP:

Chromatin immunoprecipitation

DAISY:

Diabetes Autoimmunity Study in the Young

DIPP:

Diabetes Prediction and Prevention

DNMT:

DNA methyltransferase

HLA:

Human leukocyte antigen

IFN:

Interferon

IL:

Interleukin

LFA:

Lymphocyte function-associated antigen

MHC:

Major histocompatibility complex

MS:

Methionine synthase

NF-κB:

Nuclear factor-κB

Seq:

Sequencing

SNP:

Single nucleotide polymorphism

TCR:

T cell receptor

TEDDY:

The Environmental Determinants of Diabetes in the Young

TH :

T helper

T1D:

Type 1 diabetes

Treg :

T regulatory

References

  1. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    PubMed  CAS  Google Scholar 

  2. Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32:468–478

    PubMed  CAS  Google Scholar 

  3. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707

    PubMed  CAS  Google Scholar 

  4. Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373:2027–2033

    PubMed  Google Scholar 

  5. Fourlanos S, Varney MD, Tait BD, Morahan G, Honeyman MC, Colman PG et al (2008) The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 31:1546–1549

    PubMed  Google Scholar 

  6. Gillespie KM, Bain SC, Barnett AH, Bingley PJ, Christie MR, Gill GV et al (2004) The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet 364:1699–1700

    PubMed  Google Scholar 

  7. Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T (2008) Concordance for islet autoimmunity among monozygotic twins. N Engl J Med 359:2849–2850

    PubMed  CAS  Google Scholar 

  8. Redondo MJ, Rewers M, Yu L, Garg S, Pilcher CC, Elliott RB et al (1999) Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ 318:698–702

    PubMed  CAS  Google Scholar 

  9. Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52:1052–1055

    PubMed  CAS  Google Scholar 

  10. Knip M, Veijola R, Virtanen SM, Hyoty H, Vaarala O, Akerblom HK (2005) Environmental triggers and determinants of type 1 diabetes. Diabetes 54(Suppl 2):S125–S136

    PubMed  CAS  Google Scholar 

  11. Lefebvre DE, Powell KL, Strom A, Scott FW (2006) Dietary proteins as environmental modifiers of type 1 diabetes mellitus. Annu Rev Nutr 26:175–202

    PubMed  CAS  Google Scholar 

  12. MacFarlane AJ, Strom A, Scott FW (2009) Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome 20:624–632

    PubMed  CAS  Google Scholar 

  13. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    PubMed  CAS  Google Scholar 

  14. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    PubMed  CAS  Google Scholar 

  15. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    PubMed  CAS  Google Scholar 

  16. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    PubMed  CAS  Google Scholar 

  17. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    PubMed  CAS  Google Scholar 

  18. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    PubMed  CAS  Google Scholar 

  19. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655

    PubMed  CAS  Google Scholar 

  20. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    PubMed  CAS  Google Scholar 

  21. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    PubMed  CAS  Google Scholar 

  22. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    PubMed  CAS  Google Scholar 

  23. Wilson CB, Rowell E, Sekimata M (2009) Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 9:91–105

    PubMed  CAS  Google Scholar 

  24. Sawalha AH (2008) Epigenetics and T-cell immunity. Autoimmunity 41:245–252

    PubMed  CAS  Google Scholar 

  25. Aune TM, Collins PL, Chang S (2009) Epigenetics and T helper 1 differentiation. Immunology 126:299–305

    PubMed  CAS  Google Scholar 

  26. Ballas ZK (1984) The use of 5-azacytidine to establish constitutive interleukin 2-producing clones of the EL4 thymoma. J Immunol 133:7–9

    PubMed  CAS  Google Scholar 

  27. Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA, Sider JR et al (1998) Helper T cell differentiation is controlled by the cell cycle. Immunity 9:229–237

    PubMed  CAS  Google Scholar 

  28. Lee DU, Agarwal S, Rao A (2002) Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16:649–660

    PubMed  CAS  Google Scholar 

  29. Santangelo S, Cousins DJ, Winkelmann NE, Staynov DZ (2002) DNA methylation changes at human Th2 cytokine genes coincide with DNase I hypersensitive site formation during CD4(+) T cell differentiation. J Immunol 169:1893–1903

    PubMed  CAS  Google Scholar 

  30. Agarwal S, Rao A (1998) Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9:765–775

    PubMed  CAS  Google Scholar 

  31. Melvin AJ, McGurn ME, Bort SJ, Gibson C, Lewis DB (1995) Hypomethylation of the interferon-gamma gene correlates with its expression by primary T-lineage cells. Eur J Immunol 25:426–430

    PubMed  CAS  Google Scholar 

  32. Jones B, Chen J (2006) Inhibition of IFN-gamma transcription by site-specific methylation during T helper cell development. EMBO J 25:2443–2452

    PubMed  CAS  Google Scholar 

  33. Makar KW, Wilson CB (2004) DNA methylation is a nonredundant repressor of the Th2 effector program. J Immunol 173:4402–4406

    PubMed  CAS  Google Scholar 

  34. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z et al (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167

    PubMed  Google Scholar 

  35. Yano S, Ghosh P, Kusaba H, Buchholz M, Longo DL (2003) Effect of promoter methylation on the regulation of IFN-gamma gene during in vitro differentiation of human peripheral blood T cells into a Th2 population. J Immunol 171:2510–2516

    PubMed  CAS  Google Scholar 

  36. Fitzpatrick DR, Shirley KM, McDonald LE, Bielefeldt-Ohmann H, Kay GF, Kelso A (1998) Distinct methylation of the interferon gamma (IFN-gamma) and interleukin 3 (IL-3) genes in newly activated primary CD8+ T lymphocytes: regional IFN-gamma promoter demethy­lation and mRNA expression are heritable in CD44(high)CD8+ T cells. J Exp Med 188:103–117

    PubMed  CAS  Google Scholar 

  37. Richardson B (1986) Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum Immunol 17:456–470

    PubMed  CAS  Google Scholar 

  38. Richardson BC, Strahler JR, Pivirotto TS, Quddus J, Bayliss GE, Gross LA et al (1992) Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum 35:647–662

    PubMed  CAS  Google Scholar 

  39. Lu Q, Ray D, Gutsch D, Richardson B (2002) Effect of DNA methylation and chromatin structure on ITGAL expression. Blood 99:4503–4508

    PubMed  CAS  Google Scholar 

  40. Wulfing C, Sumen C, Sjaastad MD, Wu LC, Dustin ML, Davis MM (2002) Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat Immunol 3:42–47

    PubMed  CAS  Google Scholar 

  41. Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP et al (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182:259–273

    PubMed  CAS  Google Scholar 

  42. Sgouroudis E, Piccirillo CA (2009) Control of type 1 diabetes by CD4  +  Foxp3+ regulatory T cells: lessons from mouse models and implications for human disease. Diabetes Metab Res Rev 25:208–218

    PubMed  CAS  Google Scholar 

  43. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4  +  CD25+ regulatory T cells. Nat Immunol 4:330–336

    PubMed  CAS  Google Scholar 

  44. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J et al (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5:e38

    PubMed  Google Scholar 

  45. Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551

    PubMed  CAS  Google Scholar 

  46. Janson PC, Winerdal ME, Marits P, Thorn M, Ohlsson R, Winqvist O (2008) FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS One 3:e1612

    PubMed  Google Scholar 

  47. Saccani S, Pantano S, Natoli G (2001) Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 193:1351–1359

    PubMed  CAS  Google Scholar 

  48. Saccani S, Pantano S, Natoli G (2002) p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol 3:69–75

    PubMed  CAS  Google Scholar 

  49. Saccani S, Natoli G (2002) Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev 16:2219–2224

    PubMed  CAS  Google Scholar 

  50. Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57:3189–3198

    PubMed  CAS  Google Scholar 

  51. Miao F, Wu X, Zhang L, Yuan YC, Riggs AD, Natarajan R (2007) Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J Biol Chem 282:13854–13863

    PubMed  CAS  Google Scholar 

  52. Matveyenko AV, Butler PC (2008) Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab 10(Suppl 4):23–31

    PubMed  CAS  Google Scholar 

  53. Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226

    PubMed  CAS  Google Scholar 

  54. Chakrabarti SK, Francis J, Ziesmann SM, Garmey JC, Mirmira RG (2003) Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem 278:23617–23623

    PubMed  CAS  Google Scholar 

  55. Mutskov V, Raaka BM, Felsenfeld G, Gershengorn MC (2007) The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells 25:3223–3233

    PubMed  CAS  Google Scholar 

  56. Babu DA, Deering TG, Mirmira RG (2007) A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol Genet Metab 92:43–55

    PubMed  CAS  Google Scholar 

  57. Francis J, Chakrabarti SK, Garmey JC, Mirmira RG (2005) Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem 280:36244–36253

    PubMed  CAS  Google Scholar 

  58. Deering TG, Ogihara T, Trace AP, Maier B, Mirmira RG (2009) Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes 58:185–193

    PubMed  CAS  Google Scholar 

  59. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    PubMed  CAS  Google Scholar 

  60. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281:26932–26942

    PubMed  CAS  Google Scholar 

  61. van Arensbergen J, Garcia-Hurtado J, Moran I, Maestro MA, Xu X, Van de Casteele M et al (2010) Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res 20:722–732

    PubMed  Google Scholar 

  62. Fox JT, Stover PJ (2008) Folate-mediated one-carbon metabolism. Vitam Horm 79:1–44

    PubMed  CAS  Google Scholar 

  63. Wagner C (1995) Biochemical role of folate in cellular metabolism. In: Bailey LB (ed) Folate in health and disease. Marcell Dekker, Inc., New York, pp 23–42

    Google Scholar 

  64. Finkelstein JD, Martin JJ, Harris BJ, Kyle WE (1982) Regulation of the betaine content of rat liver. Arch Biochem Biophys 218:169–173

    PubMed  CAS  Google Scholar 

  65. Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229–250

    PubMed  CAS  Google Scholar 

  66. Heilman K, Zilmer M, Zilmer K, Kool P, Tillmann V (2009) Elevated plasma adiponectin and decreased plasma homocysteine and asymmetric dimethylarginine in children with type 1 diabetes. Scand J Clin Lab Invest 69:85–91

    PubMed  CAS  Google Scholar 

  67. Robillon JF, Canivet B, Candito M, Sadoul JL, Jullien D, Morand P et al (1994) Type 1 diabetes mellitus and homocyst(e)ine. Diabete Metab 20:494–496

    PubMed  CAS  Google Scholar 

  68. Mazza A, Bossone E, Mazza F, Distante A (2005) Reduced serum homocysteine levels in type 2 diabetes. Nutr Metab Cardiovasc Dis 15:118–124

    PubMed  Google Scholar 

  69. Jacobs RL, House JD, Brosnan ME, Brosnan JT (1998) Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat. Diabetes 47:1967–1970

    PubMed  CAS  Google Scholar 

  70. Dicker-Brown A, Fonseca VA, Fink LM, Kern PA (2001) The effect of glucose and insulin on the activity of methylene tetrahydrofolate reductase and cystathionine-beta-synthase: studies in hepatocytes. Atherosclerosis 158:297–301

    PubMed  CAS  Google Scholar 

  71. Chiang EP, Wang YC, Chen WW, Tang FY (2009) Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. J Clin Endocrinol Metab 94:1017–1025

    PubMed  CAS  Google Scholar 

  72. Abu-Lebdeh HS, Barazzoni R, Meek SE, Bigelow ML, Persson XM, Nair KS (2006) Effects of insulin deprivation and treatment on homocysteine metabolism in people with type 1 diabetes. J Clin Endocrinol Metab 91:3344–3348

    PubMed  CAS  Google Scholar 

  73. Fonseca V, Dicker-Brown A, Ranganathan S, Song W, Barnard RJ, Fink L et al (2000) Effects of a high-fat-sucrose diet on enzymes in homocysteine metabolism in the rat. Metabolism 49:736–741

    PubMed  CAS  Google Scholar 

  74. Ratnam S, Maclean KN, Jacobs RL, Brosnan ME, Kraus JP, Brosnan JT (2002) Hormonal regulation of cystathionine beta-synthase expression in liver. J Biol Chem 277:42912–42918

    PubMed  CAS  Google Scholar 

  75. Gursu MF, Baydas G, Cikim G, Canatan H (2002) Insulin increases homocysteine levels in a dose-dependent manner in diabetic rats. Arch Med Res 33:305–307

    PubMed  CAS  Google Scholar 

  76. Williams KT, Garrow TA, Schalinske KL (2008) Type I diabetes leads to tissue-specific DNA hypomethylation in male rats. J Nutr 138:2064–2069

    PubMed  CAS  Google Scholar 

  77. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG et al (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205:2409–2417

    PubMed  CAS  Google Scholar 

  78. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–1236

    PubMed  CAS  Google Scholar 

  79. Rathmell JC, Newgard CB (2009) Biochemistry, a glucose-to-gene link. Science 324:1021–1022

    PubMed  CAS  Google Scholar 

  80. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    PubMed  CAS  Google Scholar 

  81. Concannon P, Rich SS, Nepom GT (2009) Genetics of type 1A diabetes. N Engl J Med 360:1646–1654

    PubMed  CAS  Google Scholar 

  82. Feinberg AP (2010) Genome-scale approaches to the epigenetics of common human disease. Virchows Arch 456:13–21

    PubMed  CAS  Google Scholar 

  83. Hurd PJ, Nelson CJ (2009) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic 8:174–183

    PubMed  CAS  Google Scholar 

  84. Ziegler AG, Hummel M, Schenker M, Bonifacio E (1999) Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 48:460–468

    PubMed  CAS  Google Scholar 

  85. Barker JM, Goehrig SH, Barriga K, Hoffman M, Slover R, Eisenbarth GS et al (2004) Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up. Diabetes Care 27:1399–1404

    PubMed  Google Scholar 

  86. Kimpimaki T, Kupila A, Hamalainen AM, Kukko M, Kulmala P, Savola K et al (2001) The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish type 1 diabetes prediction and prevention study. J Clin Endocrinol Metab 86:4782–4788

    PubMed  CAS  Google Scholar 

  87. TEDDY Study Group (2008) The environmental determinants of diabetes in the young (TEDDY) study. Ann N Y Acad Sci 1150:1–13

    Google Scholar 

  88. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    PubMed  CAS  Google Scholar 

  89. Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, Novakovic B et al (2010) DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet 19:4176–4188

    PubMed  CAS  Google Scholar 

  90. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H et al (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299:2877–2883

    PubMed  CAS  Google Scholar 

  91. Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M et al (2010) Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6:e1001252

    PubMed  CAS  Google Scholar 

  92. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20:170–179

    PubMed  CAS  Google Scholar 

  93. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(Spec No 1):R47–R58

    PubMed  CAS  Google Scholar 

  94. Kaaja R, Ronnemaa T (2008) Gestational diabetes: pathogenesis and consequences to mother and offspring. Rev Diabet Stud 5:194–202

    PubMed  Google Scholar 

  95. Pirkola J, Vaarasmaki M, Leinonen E, Bloigu A, Veijola R, Tossavainen P et al (2008) Maternal type 1 and gestational diabetes: postnatal differences in insulin secretion in offspring at preschool age. Pediatr Diabetes 9:583–589

    PubMed  Google Scholar 

  96. Ziegler AG, Hillebrand B, Rabl W, Mayrhofer M, Hummel M, Mollenhauer U et al (1993) On the appearance of islet associated autoimmunity in offspring of diabetic mothers: a prospective study from birth. Diabetologia 36:402–408

    PubMed  CAS  Google Scholar 

  97. Rasmussen T, Stene LC, Samuelsen SO, Cinek O, Wetlesen T, Torjesen PA et al (2009) Maternal BMI before pregnancy, maternal weight gain during pregnancy, and risk of persistent positivity for multiple diabetes-associated autoantibodies in children with the high-risk HLA genotype: the MIDIA study. Diabetes Care 32:1904–1906

    PubMed  Google Scholar 

  98. Couper JJ, Beresford S, Hirte C, Baghurst PA, Pollard A, Tait BD et al (2009) Weight gain in early life predicts risk of islet autoimmunity in children with a first-degree relative with type 1 diabetes. Diabetes Care 32:94–99

    PubMed  Google Scholar 

  99. EURODIAB Substudy 2 Study Group (2002) Rapid early growth is associated with increased risk of childhood type 1 diabetes in various European populations. Diabetes Care 25:1755–1760

    Google Scholar 

  100. Dabelea D, D’Agostino RB Jr, Mayer-Davis EJ, Pettitt DJ, Imperatore G, Dolan LM et al (2006) Testing the accelerator hypothesis: body size, beta-cell function, and age at onset of type 1 (autoimmune) diabetes. Diabetes Care 29:290–294

    PubMed  Google Scholar 

  101. Cardwell CR, Stene LC, Joner G, Davis EA, Cinek O, Rosenbauer J et al (2010) Birthweight and the risk of childhood-onset type 1 diabetes: a meta-analysis of observational studies using individual patient data. Diabetologia 53:641–651

    PubMed  CAS  Google Scholar 

  102. Aberg A, Westbom L, Kallen B (2001) Congenital malformations among infants whose mothers had gestational diabetes or preexisting diabetes. Early Hum Dev 61:85–95

    PubMed  CAS  Google Scholar 

  103. Martinez-Frias ML (1994) Epidemiological analysis of outcomes of pregnancy in diabetic mothers: identification of the most characteristic and most frequent congenital anomalies. Am J Med Genet 51:108–113

    PubMed  CAS  Google Scholar 

  104. Wentzel P, Gareskog M, Eriksson UJ (2005) Folic acid supplementation diminishes diabetes- and glucose-induced dysmorphogenesis in rat embryos in vivo and in vitro. Diabetes 54:546–553

    PubMed  CAS  Google Scholar 

  105. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    PubMed  CAS  Google Scholar 

  106. Lamb MM, Myers MA, Barriga K, Zimmet PZ, Rewers M, Norris JM (2008) Maternal diet during pregnancy and islet autoimmunity in offspring. Pediatr Diabetes 9:135–141

    PubMed  Google Scholar 

  107. Fronczak CM, Baron AE, Chase HP, Ross C, Brady HL, Hoffman M et al (2003) In utero dietary exposures and risk of islet autoimmunity in children. Diabetes Care 26:3237–3242

    PubMed  Google Scholar 

  108. Brekke HK, Ludvigsson J (2007) Vitamin D supplementation and diabetes-related autoimmunity in the ABIS study. Pediatr Diabetes 8:11–14

    PubMed  Google Scholar 

  109. Norris JM, Barriga K, Klingensmith G, Hoffman M, Eisenbarth GS, Erlich HA et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720

    PubMed  CAS  Google Scholar 

  110. Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E (2003) Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290:1721–1728

    PubMed  CAS  Google Scholar 

  111. Hypponen E, Kenward MG, Virtanen SM, Piitulainen A, Virta-Autio P, Tuomilehto J et al (1999) Infant feeding, early weight gain, and risk of type 1 diabetes. Childhood diabetes in Finland (DiMe) study group. Diabetes Care 22:1961–1965

    PubMed  CAS  Google Scholar 

  112. Oge A, Isganaitis E, Jimenez-Chillaron J, Reamer C, Faucette R, Barry K et al (2007) In utero undernutrition reduces diabetes incidence in non-obese diabetic mice. Diabetologia 50:1099–1108

    PubMed  CAS  Google Scholar 

  113. Chamson-Reig A, Arany EJ, Summers K, Hill DJ (2009) A low protein diet in early life delays the onset of diabetes in the non-obese diabetic mouse. J Endocrinol 201:231–239

    PubMed  CAS  Google Scholar 

  114. Boujendar S, Arany E, Hill D, Remacle C, Reusens B (2003) Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J Nutr 133:2820–2825

    PubMed  CAS  Google Scholar 

  115. Petrik J, Reusens B, Arany E, Remacle C, Coelho C, Hoet JJ et al (1999) A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 140:4861–4873

    PubMed  CAS  Google Scholar 

  116. Lehnertz B, Northrop JP, Antignano F, Burrows K, Hadidi S, Mullaly SC et al (2010) Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function. J Exp Med 207:915–922

    PubMed  CAS  Google Scholar 

  117. Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622

    PubMed  CAS  Google Scholar 

  118. Chen H, Gu X, Su IH, Bottino R, Contreras JL, Tarakhovsky A et al (2009) Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev 23:975–985

    PubMed  CAS  Google Scholar 

  119. Li Y, Zhao M, Hou C, Liang G, Yang L, Tan Y, Wang Z, Yin H, Zhou Z, Lu Q (2011) Abnormal DNA methylation in CD4(+) T cells from patients with latent autoimmune diabetes in adults. Diabetes Res Clin Pract 94:242–248 doi:10.1016/j.diabres.2011.07.027

    Google Scholar 

  120. Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, Wollheim CB, Nitert MD, Ling C (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA1c levels in human pancreatic islets. Diabetologia 54(2):360–367

    Google Scholar 

  121. Anderson RM, Bosch JA, Goll MG, Hesselson D, Dong PD, Shin D, Chi NC, Shin CH, Schlegel A, Halpern M, Stainier DY (2009) Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 334(1):213–23

    Google Scholar 

  122. Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bassel-Duby R, Ravassard P, Olson EN, Haumaitre C, Scharfmann R (2011) Specific control of pancreatic endocrine {beta}- and {delta}-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 60:2861–2871 doi:10.2337/db11-0440

    Google Scholar 

  123. Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S, Li Y (2010) High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res. 316(17):2903–2909

    Google Scholar 

  124. Syreeni A, El-Osta A, Forsblom C, Sandholm N, Parkkonen M, Tarnow L, Parving HH, McKnight AJ, Maxwell AP, Cooper ME, Groop PH; on the behalf of the FinnDiane Study Group (2011) Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with Type 1 diabetes. Diabetes 60:3073–3080 doi:10.2337/db11-0073

    Google Scholar 

  125. Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics 3:33

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Alfred Aziz, Fraser Scott and Alex Wong for helpful discussions. This work is funded by Health Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. MacFarlane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

MacFarlane, A.J. (2012). Epigenetic Epidemiology of Type 1 Diabetes. In: Michels, K. (eds) Epigenetic Epidemiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2495-2_19

Download citation

Publish with us

Policies and ethics