Skip to main content

Carbon Nanotubes for Environmental Protection

  • Chapter
  • First Online:
Environmental Chemistry for a Sustainable World

Abstract

Nanotechnology is based on the fact that very small structures usually have new properties and behavior that are not observed in bulk matter of the same composition. Carbon nanotubes are one of the most striking nanometric structures. Their properties depend upon diameter and chirality. Carbon nanotubes have high length to radius ratio, high degree of mechanical strength and flexibility. Carbon nanotubes can behave like metallic, semi-conducting or insulating material. Carbon nanotubes have attracted major attention in latest applications such as nanodevices, field emission, gas adsorption, composite reinforcement, metal composites, and as a catalyst supports because they possess exceptional mechanical properties, unique electrical properties, high chemical and thermal stability and a large specific surface area. The properties of carbon nanotubes can be altered by encapsulating metals to make electrical or magnetic nanocables structures. Carbon nanotubes may therefore be suitable for sorbing hydrogen or separating gases and also can be used as energy storage, membranes for gaseous adsorption and sensors for environmental application. This review discusses the main concepts behind the role of carbon nanotubes for the special application in the field of environmental protection. The major points which are discussed in this review are:

  • Introduction to carbon nanotubes: in this section we discuss the main synthesis routes of nanotubes and their properties

  • Use of carbon nanotubes for energy storage: hydrogen storage is considered to be an ideal for its clean and abundantly reserved. Storage and transportation of hydrogen is an important challenge which has been focused on the use of carbon nanotubes.

  • Use of carbon nanotubes as a sorbents: carbon nanotubes are thought to be very good sorbent for various toxic gases, dioxins, and volatile organic compounds.

  • Use of carbon nanotubes as sensors: carbon nanotubes are thought to be promising candidate for nano scale sensing material for the detection of various pollutants in air like volatile organic compounds such as benzene and toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avouris Ph (2002) Molecular electronics with carbon nanotubes. Acc Chem Res 35:1026–1034

    Article  CAS  Google Scholar 

  • Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spink GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesez M (1999) Carbon nanotubes actuators. Science 284:1340–1344

    Article  CAS  Google Scholar 

  • Bekyarova E, Davis M, Burch T, Itkis ME, Zhao B, Sunshine S, Haddon RC (2004) Chemically functionalized single walled carbon nanotubes as ammonia sensors. J Phys Chem B 108(51):19717–19720

    Article  CAS  Google Scholar 

  • Boul PJ, Liu J, Mickelson ET, Huffman CB, Ericson LM, Chiang IW, Smith KA, Colbert DT, Hauge RH, Margrave JL, Smalley RE (1999) Reversible sidewall functionalization of bucky tubes. Chem Phys Lett 310(3–4):367–372

    Article  CAS  Google Scholar 

  • Bower C, Kleinhammes A, Wu Y, Zhou O (1998) Intercalation and partial exfoliation of single walled carbon nanotubes by nitric acid. Chem Phys Lett 288(2–4):481–486

    Article  CAS  Google Scholar 

  • Bower C, Zhou O, Zhu W, Werder DJ, Jin S (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769

    Article  CAS  Google Scholar 

  • Cai Y, Cai Y, Mou S, Lu Y (2005) Multiwalled carbon nanotubes as a solid phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081(2):245–247

    Article  CAS  Google Scholar 

  • Cantalini C, Valentini L, Lozzi L, Armentano I, Kenny JM, Santucci S (2003) NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sens Actuators B 93:333–337

    Article  CAS  Google Scholar 

  • Cao DP, Zhang XR, Chen JF, Wang WC, Yun J (2003) Optimization of single walled carbon nanotubes arrays for methane storage at room temperature. J Phys Chem B 107(48):13286–13292

    Article  CAS  Google Scholar 

  • Chen P et al (1999) Science 285:91

    Article  CAS  Google Scholar 

  • Chen HW, Wu RJ, Chan KH, Sun YL, Su PG (2005) The application of carbon nanotubes/nafion composite material to low humidity sensing measurement. Sens Actuators B 104:80–84

    Article  CAS  Google Scholar 

  • Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH (2001) purification and characterization of single walled carbon nanotubes. J Phys Chem B 105(6):1157–1161

    Article  CAS  Google Scholar 

  • Chopra S, Mc Gurie K, Gothard N, Rao AM, Pham A (2003a) Selective gas detection using a carbon nanotubes sensor. Appl Phys Lett 83:2280–2282

    Article  CAS  Google Scholar 

  • Chopra S, McGuire K, Gothard N, Rao AM, Pham A (2003b) Appl Phys Lett 83:2280

    Article  CAS  Google Scholar 

  • Collins PG, Zettl A, Bando H, Thess A, Smalley RE (1997) Nanotube nanodevice. Science 278:100–103

    Article  CAS  Google Scholar 

  • Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804

    Article  CAS  Google Scholar 

  • Dai H (2002) Carbon nanotubes synthesis, integration and properties. Acc Chem Res 35:1035–1044

    Article  CAS  Google Scholar 

  • Dillion AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single walled carbon nanotubes. Nature 386(6623):377–379

    Article  Google Scholar 

  • Dionysiou D (2004) Environmental applications and implications of nanotechnology and nanomaterials. J Environ Eng 38(3):723–724

    Article  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Avouris Ph (2001) Carbon nanotubes: synthesis, structure, properties and applications topics in applied physics, vol 80. Springer, Berlin

    Book  Google Scholar 

  • Forster PM, Eckert J, Chang JS, Park SE, Ferey G, Cheetham AK (2003) Hydrogen adsorption in nanoporous nickel (II) phosphates. J Am Chem Soc 125(5):1309–1312

    Article  CAS  Google Scholar 

  • Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. J Am Chem Soc 125(37):11329–11333

    Article  CAS  Google Scholar 

  • Gordillo MC, Marti J (2001) Hydrogen bonding in supercritical water confined in carbon nanotubes. Chem Phys Lett 341(3–4):250–254

    Article  CAS  Google Scholar 

  • Hafner JH, Cheung CL, Woolley AT, Lieber CM (2001) Structural and functional imaging with carbon nanotubes AFM probes. Prog Biophys Mol Biol 77(1):73–110

    Article  CAS  Google Scholar 

  • Halicioglu T, Jaffe RL (1999) Solvent effect on functional groups attached to edges of carbon nanotubes. Nano Lett 2(6):367–372

    Google Scholar 

  • Hernadi K, Siska A, Thien-Nga L, Forro L, Kiricsi I (2001) Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics 141:203–209

    Article  Google Scholar 

  • http://es.epa.gov/ncer/nano/index.html

  • Huang WZ, Zhang XB, Kong FZ, Tu JP, Ma JX, Chen CP, Ning YS, Sun YL (2002) Hydrogen storage capacity of potassium – doped multiwalled carbon nanotubes. Chin J Chem Phys 15(1):51–55

    CAS  Google Scholar 

  • Hynek S, Fuller W, Bentley J (1997) Hydrogen storage by carbon sorption. Int J Hydrog Energy 22(6):601–610

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Article  CAS  Google Scholar 

  • Jin YX, Liu ZJ, Chen WX, Xu ZD (2002) Hydrogenation of chlorophyll over carbon nanotubes – supported nickel catalyst at normal temperature and pressure. Acta Phys Chim Sin 18(5):459–462

    CAS  Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotubes molecular wires as chemical sensors. Science 287:622–625

    Article  CAS  Google Scholar 

  • Kuzmany H, Kukovecz A, Simon F, Holzweber A, Kramberger C, Pichler T (2004) Functionalization of carbon nanotubes. Synth Met 141(91–2):113–122

    Article  CAS  Google Scholar 

  • Kuznetsova A, Popova I, Yates JT, Bronikowski MJ, Huffman CB, Liu J, Smalley RE, Hwu HH, Chen JGG (2001) Oxygen – containing functional groups on single walled carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J Am Chem Soc 123(43):10699–10704

    Article  CAS  Google Scholar 

  • Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357(3–4):263–266

    Article  CAS  Google Scholar 

  • Li YH, Wang SG, Luan ZK, Ding J, Xu CL, Wu DH (2003a) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41(5):1057–1062

    Article  CAS  Google Scholar 

  • Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003b) Carbon nanotubes sensors for gas and vapor detection. Nano Lett 3(7):929–933

    Article  CAS  Google Scholar 

  • Li QL, Yuan DX, Lin QM (2004) Evaluation of multiwalled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. J Chromatogr A 1026(1–2):283–288

    Article  CAS  Google Scholar 

  • Liu CG, Liu M, Wang MZ, Cheng HM (2002) Research and development of carbon materials for electrochemical capacitors – II – the carbon electrode. New Carbon Mater 17(2):64–72

    CAS  Google Scholar 

  • Long RQ, Yang RT (2001) carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123(9):2058–2059

    Article  CAS  Google Scholar 

  • Masciangioli T, Zhang WX (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37(5):102A–108A

    Article  CAS  Google Scholar 

  • Nguyen CV, Dezeit L, Cassell AM, Li J, Han J, Meyyappan M (2002) Preparation of nucleic acid functionalized carbon nanotubes arrays. Nano Lett 2(10):1079–1081

    Article  CAS  Google Scholar 

  • Nikolaev P, Bronikowski MJ, Bradley RK, Fohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas phase catalytic growth of single walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91–97

    Article  CAS  Google Scholar 

  • Novak JP, Snow ES, Houser EJ, Park D, Stepnowski JL, McGill RA (2003) Nerve agent detection using networks of single-walled carbon nanotubes. Appl Phys Lett 83:4026

    Article  CAS  Google Scholar 

  • Odom TW, Huang JL, Kim P, Lieber CM (2000) Structure and electronic properties of carbon nanotubes. J Phys Chem B 104(13):2794–2809

    Article  CAS  Google Scholar 

  • Ong KG, Zeng K, Grimes CA (2002) A wireless passive carbon nanotubes based gas sensors. IEEE Sens J 2:82–88

    Article  CAS  Google Scholar 

  • Peng XJ, Li YH, Luan ZK, Di ZC, Wang HY, Tian BH, Jia ZP (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376(1–2):154–158

    Article  CAS  Google Scholar 

  • Penza M, Cassano G, Aversa P, Antolini F, Cusano A, Cutolo A, Giordano M, Nicolais L (2004a) Alcohol detection using carbon nanotubes acoustic and optical sensors. Appl Phys Lett 85(12):2379–2381

    Article  CAS  Google Scholar 

  • Penza M, Antolini F, Vittori-Antisari M (2004b) Carbon nanotubes as SAW chemical sensors materials. Sens Actuators B 100(1–2):47–59

    Article  CAS  Google Scholar 

  • Penza M, Antolini F, Antisari MV (2004c) Sens Actuators B 100:47

    Article  CAS  Google Scholar 

  • Penza M, Cassano G, Aversa P, Cusano A, Cutolo A, Giordano M, Nicolais L (2005a) Carbon nanotubes acoustic and optical sensors for volatile organic compounds detection. Nanotechnology 16:2536–2547

    Article  CAS  Google Scholar 

  • Penza M, Cassano G, Aversa P, Antolini F, Cusano A, Cutolo A, Giordano M, Nicolais L (2005b) Carbon nanotubes-coated multi-transducing sensors for VOCs detection. Sens Actuators B 111–112:171–180

    Article  Google Scholar 

  • Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho KJ (2003) Toward large arrays of multiplex functionalized carbon nanotubes sensors for highly sensitive and selective molecular detection. Nano Lett 3(3):347–351

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Marco MP, Lopez de Alda MJ, Barcelo D (2004) Biosensors for environmental applications: Future development trends. Pure Appl Chem 76:723

    Article  CAS  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1998) Properties of carbon nanotubes. Imperial Collage Press, Singapore

    Book  Google Scholar 

  • Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y et al (2000) Large scale synthesis of single wall carbon nanotubes by arc discharge method. J Phys Chem Solids 61:1031–1036

    Article  CAS  Google Scholar 

  • Simonyan VV, Johnson JK (2002) Hydrogen storage in carbon nanotubes and graphitic nano fibers. J Alloys Compd 330:659–665

    Article  Google Scholar 

  • Someya T, Small J, Kim P, Nuckolls C, Yardley JT (2003) Alcohol vapor sensors based on single walled carbon nanotubes field effect transistors. Nano Lett 3(7):877–881

    Article  CAS  Google Scholar 

  • Suehiro J, Zhou GB, Hara M (2003) Fabrication of a carbon nanotube- based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J Phys D Appl Phys 36(21):L109–L114

    Article  CAS  Google Scholar 

  • Sumanasekera GU, Pradhan BK, Adu CKW, Romero HE, Foley HC, Eklund PC (2002) Thermoelectric chemical sensor based on single wall carbon nanotubes. Mol Cryst Liq Cryst Sci Technol Sect A 387:31

    Article  CAS  Google Scholar 

  • Sun YP, Huang WJ, Lin Y, Fu KF, Kitaygorodskiy A, Riddle LA, Yu YJ, Carroll DL (2001) Soluble dendron – functionalized carbon nanotubes: preparation, characterization and properties. Chem Mater 13(9):2864–2869

    Article  CAS  Google Scholar 

  • Tanaka H, EI-Merraoui M, Steele WA, Kaneko K (2002) Methane adsorption on single walled carbon nanotubes: a density functional theory model. Chem Phys Lett 352(5–6):334–341

    Article  CAS  Google Scholar 

  • Thostenson ET, Ren Z, Chou TS (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  • Valentini L, Armentano I, Kenny JM, Cantalini C, Lozzi L, Santucci S (2003) Sensors for sub ppm NO2 gas detection based on carbon nanotubes thin films. Appl Phys Lett 82:961–963

    Article  CAS  Google Scholar 

  • Valentini L, Armentano I, Lozzi L, Santucci S, Kenny JM (2004) Interaction of methane with carbon nanotubes thin films: role of defects and oxygen adsorption. Mater Sci Eng C Biomim Supramol Syst 24(4):527–533

    Article  Google Scholar 

  • Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grime CA (2001a) Gas sensing characteristics of multiwalled carbon nanotubes. Sens Actuators B 81:32–41

    Article  CAS  Google Scholar 

  • Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA (2001b) Gas sensing characteristics of multiwalled carbon nanotubes. Sens Actuators B 81:32–41

    Article  CAS  Google Scholar 

  • Villalpando-Paez F, Romero AH, Munoz-Sandoval E, Martinez LM, Terrones H, Terrones M (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 386(1–3):137–143

    Article  CAS  Google Scholar 

  • Wei BY, Hsu MC, Yang YS, Chien SH, Lin HM (2003) Gas adsorption on single walled carbon nanotubes measured by piezoelectric quartz crystal microbalance. Mater Chem Phys 81:126–133

    Article  CAS  Google Scholar 

  • Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometer – sized probes in chemistry and biology. Nature 394(6688):52–55

    Article  CAS  Google Scholar 

  • Wong YM, Kang WP, Davidson JL, Wisitsora A, Soh KL (2003) A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens Actuators B 93:327–332

    Article  CAS  Google Scholar 

  • www.epa.gov

  • www.pa.msu.edu/cmp/csc/ntproperties/equilibriumstructure.html, 2004

  • Yang Y, Huang S, He H, Mau AWH, Dai L (1999) Patterned growth of well – aligned carbon nanotubes: a photolithographic approach. J Am Chem Soc 121:10832–10833

    Article  CAS  Google Scholar 

  • Yang CM, Kanoh H, Kaneko K, Yudasaka M, Iijima S (2002a) Adsorption behaviors of HiPco single walled carbon nanotubes aggregates for alcohol vapors. J Phys Chem B 106:8994–8999

    Article  CAS  Google Scholar 

  • Yang YL, Zhang J, Nan XL, Liu ZF (2002b) Studies on the dissociation behaviour of carboxylic groups at the open end of single – walled carbon nanotubes by tip chemistry. Chem J Chin Univ Chin 23(3):469–471

    Google Scholar 

  • Yang CM, Kaneko K, Yudasaka M, Iijima S (2002c) Effect of purification on pore structure of HiPco single – walled carbon nanotubes aggregates. Nano Lett 2(4):385–388

    Article  CAS  Google Scholar 

  • Zhang Y, Iijima S (1999) Formation of single wall carbon nanotubes by laser ablation of fullerenes at low temperatures. Appl Phys Lett 75:3087–3089

    Article  CAS  Google Scholar 

  • Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL (2003) Effect of chemical oxidation on the structure of single – walled carbon nanotubes. J Phys Chem B 107(16):3712–3718

    Article  CAS  Google Scholar 

  • Zhao JJ, Park HK, Han J, Lu JP (2004) Electronic properties of carbon nanotubes with covalent sidewall functionalization. J Phys Chem B 108(14):4227–4230

    Article  CAS  Google Scholar 

  • Zhu HW, Li XS, Chi LJ, Xu CL, Wu DH, Mao ZQ (2003) Hydrogen storage in heat treated carbon nanofibers prepared by the vertical floating catalyst method. Mater Chem Phys 78(3):670–675

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Dr Vikram Kumar Director CRRI/NPL, New Delhi for giving the permission for the publication of this article. Authors are also thankful to Dr Pawan Kapoor, Director, CSIO, Chandigarh for his constant encouragement and suggestions for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sippy K. Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chauhan, S.K., Shukla, A., Dutta, S., Gangopadhyay, S., Bharadwaj, L.M. (2012). Carbon Nanotubes for Environmental Protection. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2442-6_3

Download citation

Publish with us

Policies and ethics