Skip to main content

Air Quality Monitoring with Lichens in India. Heavy Metals and Polycyclic Aromatic Hydrocarbons

  • Chapter
  • First Online:
Environmental Chemistry for a Sustainable World

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW))

Abstract

Air quality monitoring is an integral part of an Environmental Impact Assessment Programme. It can be carried out either by direct air samplers or by employing biomonitoring plants. Monitoring of air pollution using living organisms provide information on the nature and quantity of pollutants at low cost. Lichens can be used as biomonitoring organism because they have slow growth rate and can survive longer than vascular plants and are highly dependent on atmospheric source for nutrients. The feature that makes lichens a very useful group of plants in comparison to other vascular plants is that they do not shed their parts and remain a repository of facts. Lichen biomonitoring in a diverse and wide geographic area of India can provide a cost effective alternative to monitor the air quality of such a wide region. The data presented here is the consolidated information about the biomonitoring studies carried out in India till date, which will provide the base line data for future biomonitoring studies and prospects of utilizing lichens in air quality studies in India. The pollutants discussed are Pb, Zn, Ni, Cu, Hg, Cr and polycyclic aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aptroot A, van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentipohlia phycobionts. Environ Pollut 146(2):293–298

    Article  CAS  Google Scholar 

  • Augusto S, Máguas C, Matos J, Pereira MJ, Soares A, Branquinho C (2009) Spatial modeling of PAHs in lichens for fingerprinting of multisource atmospheric pollution. Environ Sci Technol 43(20):7762–7769

    Article  CAS  Google Scholar 

  • Awasthi DD (1957) A new species of Parmelia from Kodaikanal, S. India. Curr Sci 26:123–124

    Google Scholar 

  • Awasthi DD (1988) A key to the macrolichens of India and Nepal. J Hattori Bot Lab 65:207–303

    Google Scholar 

  • Awasthi DD (1991) A key to the microlichens of India Nepal and Sri Lanka. Biblioth Lichenol 40:1–337

    Google Scholar 

  • Awasthi DD (2000) A hand book of lichens. Bishan Singh Mahendra Pal Singh, Dehradun

    Google Scholar 

  • Awasthi DD (2007) A compendium of the macrolichens from India, Nepal and Sri Lanka. Bishan Singh Mahendra Pal Singh, Dehradun

    Google Scholar 

  • Baddeley MA, Ferry BW, Finegan EJ (1972) The effects of sulphur dioxide on lichen respiration. Lichenologist 5:283–291

    Article  Google Scholar 

  • Bajpai R, Upreti DK, Mishra SK (2004) Pollution monitoring with the help of lichen transplant technique at some residential sites of Lucknow city, Uttar Pradesh. J Environ Biol 25(5):191–195

    CAS  Google Scholar 

  • Bajpai R, Upreti DK, Dwivedi SK (2009) Arsenic accumulation in lichens of Mandav monuments, Dhar district, Madhya Pradesh, India. Environ Monit Assess 159:437–442. doi:10.1007/s10661-008-0641-7

    Article  CAS  Google Scholar 

  • Bajpai R, Upreti DK, Dwivedi SK (2010a) Passive monitoring of atmospheric heavy metals in a historical city of central India by Lepraria lobificans Nyl. Environ Monit Assess 166:477–484. doi:10.1007/s10661-009-1016-4

    Article  CAS  Google Scholar 

  • Bajpai R, Upreti DK, Nayaka S, Kumari B (2010b) Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal based thermal power plant of Raebareli district, north India. J Hazard Mater 174:429–436

    Article  CAS  Google Scholar 

  • Balaguer L, Manrique E, Ascaso C (1997) Predictability of the combination effects of sulphur dioxide and nitrate on green algal lichen Ramalina farinacea. Can J Bot 75:1836–1842

    Article  CAS  Google Scholar 

  • Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environ Monit Assess 69:205–220

    Article  CAS  Google Scholar 

  • Brodo IM (1961) Transplant experiments with corticolous lichens using a new technique. Ecology 42:838–841

    Article  Google Scholar 

  • Cabral JP (2003) Copper toxicity to five Parmelia lichens in vitro. Environ Exp Bot 49:237–250

    Article  CAS  Google Scholar 

  • Chauhan A, Pawar M, Kumar R, Joshi PC (2010) Ambient air quality status in Uttarakhand (India): a case study of Haridwar and Dehradun using air quality index. J Amer Sci 6(9):565–574

    Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicator of air pollution assessment – a review. Environ Pollut 114:471–492

    Article  CAS  Google Scholar 

  • Crespo A, Divakar PK, Arguello A, Gasca C, Hawksworth DL (2004) Molecular studies on Punctelia species of the Iberian Peninsula, with an emphasis on specimens newly colonizing Madrid. Lichenol 36(5):299–308

    Article  Google Scholar 

  • Das G, Das AK, Das JN, Guo N, Majumdar R, Raj S (1986) Studies on the plant responses to air pollution, occurrence of lichen in relation to Calcutta city. Indian Biologists 17(2):26–29

    Google Scholar 

  • Dubey AK, Pandey V, Upreti DK, Singh J (1999) Accumulation of lead by lichens growing in and around Faizabad, U.P., India. J Environ Biol 20(3):223–225

    CAS  Google Scholar 

  • Dzubaj A, Bačkor M, Tomko J, Peli E, Tuba Z (2008) Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotox Environ Safe 70:319–326. doi:10.1016/j.ecoenv.2007.04.002

    Article  CAS  Google Scholar 

  • Farkas E, Lokos L, Verseghy K (1985) Lichens as indicator of air pollution in the Budapest agglomeration. I Air pollution map based on floristic data and heavy metal concentration measurement. Acta Bot Hung 31:45–68

    CAS  Google Scholar 

  • Gailey FAY, Smith GH, Rintoul LJ, Lloyd OL (1985) Metal deposition patterns in central Scotland, as determined by lichen transplants. Environ Monit Assess 5:291–309

    Article  CAS  Google Scholar 

  • Garty J (1993) Lichens as biomonitors of heavymetal pollution In: Markert, B. (eds.) Plants as biomonitors VCH Verlagsgesellschaft mbh, Germany, pp 193–263

    Google Scholar 

  • Garty J, Kloog N, Wolfson R, Cohen Y, Karnieli A, Avni A (1997) The influence of air pollution on the concentration of mineral elements, on the spectral reflectance response and on the production of stress-ethylene in the lichen Ramalina duriaei. New Phytol 137:587–597

    Article  CAS  Google Scholar 

  • Garty J, Tomer S, Levin T, Lehra H (2003) Lichens as biomonitors around a coal-fired power station in Israel. Environ Res 91:186–198

    Article  CAS  Google Scholar 

  • González CM, Pignata ML (1994) The influence of air pollution on soluble proteins, chlorophyll degradation, MDA, sulphur and heavy metals in a transplanted lichen. Chem Ecol 9:105–113

    Article  Google Scholar 

  • Goyal R, Seaward MRD (1982) Metal uptake in terricolous lichens. II. Translocation in the thallus of Peltigera canina. New Phytol 90:85–98

    Article  CAS  Google Scholar 

  • Guidotti M, Stella D, Owczarek M, DeMarco A, De Simone C (2003) Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies. J Chromatogr 985(1–2):185–190

    Article  CAS  Google Scholar 

  • Gupta HK, Gupta VB, Rao CVC, Gajghate DG, Hasan MZ (2002) Urban air quality and its management strategy for an metropolitan city of India. Bull Environ Contam Toxicol 68:347–354

    Article  CAS  Google Scholar 

  • Haffner E, Lomsky B, Hynek V, Hallgren JE, Batic F, Pfanz H (2001) Air pollution and lichen physiology. Physiological responses of different lichens in a transplant experiment following an SO2-gradient. Water Air Soil Pollut 131:185–201

    Article  CAS  Google Scholar 

  • Hauck M (2009) Global warming and alternative causes of decline in arctic-alpine and boreal-montane lichens in north-western central Europe. Glob Change Biol 15:2653–2661

    Article  Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichen. Nature 227:145–148

    Article  CAS  Google Scholar 

  • Herzig R, Liebendörfer L, Urech M, Ammann K (1989) Passive biomonitoring with lichens as a part of an integrated biological measuring system for monitoring air pollution in Switzerland. Int J Environ An Ch 35:43–57

    Article  CAS  Google Scholar 

  • Holopainen T (1984) Types and distribution of ultra structural symptoms in epiphytic lichens in several urban and industrial environments in Finland. Ann Bot Fennici 21:213–229

    Google Scholar 

  • Loppi S, Bonini I (2000) Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy). Chemosphere 41:1333–1336

    Article  CAS  Google Scholar 

  • Loppi S, Frati L (2006) Lichen diversity and lichen transplants as monitors of air pollution in a rural area of central Italy. Environ Monit Assess 114:361–375. doi:10.1007/s10661-006-4937-1

    Article  CAS  Google Scholar 

  • Loppi S, Pirintsos SA (2000) Effect of dust on epiphytic lichen vegetation in the mediterranean area (Italy and Greece). Isr J Plant Sci 48:91–95

    Article  Google Scholar 

  • Loppi S, Nelli L, Ancora S, Bargagli R (1997) Passive monitoring of trace elements by means of tree leaves, epiphytic lichens and bark substrate. Environ Monit Assess 45:81–88

    Article  CAS  Google Scholar 

  • Loppi S, Pacioni G, Olivieri N, Di Giacomo F (1998) Accumulation of trace metals in the lichen Evernia prunsteri transplanted at biomonitoring sites in central Italy. Bryologist 101(3):451–454

    Article  CAS  Google Scholar 

  • Manning WJ, Feder WA (1980) Biomonitoring air pollutants with plants. Applied Science Publishers, London

    Google Scholar 

  • Markert B, Oehlmann J, Roth M (1997) General aspects of heavy metal monitoring by plants and animals. In: Subramanian KS, Iyengar GV (eds) Environmental biomonitoring – exposure, assessment and specimen banking, vol 654, ACS symposium series. American Chemical Society, Washington D.C., pp 19–29

    Chapter  Google Scholar 

  • Markert BA, Breure AM, Zechmeister HG (2003) Definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 3–39

    Google Scholar 

  • McCune B, Derr CC, Muir PS, Shirazi M, Sillet SC, Peck JE, Dale WJ (1996) Pendents for measuring lichen growth. Lichenologist 28(2):161–169

    Article  Google Scholar 

  • Mishra SK, Upreti DK, Pandey V, Bajpai R (2003) Pollution monitoring with the help of lichens transplant technique in some commercial and industrial areas of Lucknow city. Polln Res 22(2):221–225

    CAS  Google Scholar 

  • Muir DCG, Segstro MD, Welbourn PM, Toom D, Eisenreich SJ, Macdonald CR, Whelpdale DM (1993) Patterns of accumulation of airborne organochlorine contaminants in lichens from the upper great lakes region of Ontario. Environ Sci Technol 27:1201–1210

    Article  CAS  Google Scholar 

  • Nayaka S, Upreti DK (2005a) Lichen flora of Pune city (India) with reference to air pollution. In: Abstracts of the IIIrd international conference on plants and environmental pollution, NBRI, Lucknow, 28 Nov–2 Dec 2005

    Google Scholar 

  • Nayaka S, Upreti DK, Gadgil M, Pandey V (2003) Distribution pattern and heavy metal accumulation in lichens of Bangalore city with special reference to Lalbagh garden. Curr Sci 84(5):674–680

    CAS  Google Scholar 

  • Nayaka S, Upreti DK, Pandey V, Pant V (2005b) Manganese (Mn) in lichens growing on magnasite rocks in India. Bull Bri Lic Soc 97:66–68

    Google Scholar 

  • Nayaka S, Singh PK, Upreti DK (2005c) Fungicidal elements accumulated in Cryptothecia punctata (Ascomycetes) lichens of an Arecanut orchard in South India. J Environ Biol 26(2):299–300

    CAS  Google Scholar 

  • Nieboer E, Richardson DHS, Tomassini FD (1978) Mineral uptake and release by lichen: an overview. Bryologist 81:226–246

    Article  CAS  Google Scholar 

  • Nylander W (1866) Les lichens Jardin du Luxembourg. Bull Soc Bot France 13:364–372

    Article  CAS  Google Scholar 

  • Ockenden WA, Steinnes E, Parker C, Jones KC (1998) Observations on persistant organic pollutant in plants: implications for their use as passive air sampler and for POP cycling. Environ Sci Technol 32:2721–2726

    Article  CAS  Google Scholar 

  • Paoli L, Loppi S (2008) A biological method to monitor early effect of the air pollution. Environ Pollut 155:383–388. doi:10.1016/j.envpol.2007.11.004

    Article  CAS  Google Scholar 

  • Pfeiffer HN, Barclay-Estrup P (1992) The use of a single lichen species, Hypogymnia physodes as an indicator of air quality in northwestern Ontario. Bryologist 95:38–41

    Article  Google Scholar 

  • Pinho P, Augusto S, Branquinho C, Bio A, Pereira MJ, Soares A, Catarino F (2004) Mapping lichen diversity as a first step for air quality assessment. J Atmos Chem 49:377–389

    Article  CAS  Google Scholar 

  • Pirintsos SA, Kotzabasis K, Loppi S (2004) Polyamine production in lichens under metal pollution stress. J Atmos Chem 49:303–315

    Article  CAS  Google Scholar 

  • Pirintsos SA, Matsi T, Vokou D, Gaggi C, Loppi S (2006) Vertical distribution patterns of trace elements in an urban environment as reflected by their accumulation in lichen transplants. J Atmos Chem 54:121–131. doi:10.1007/s10874-006-9019-9

    Article  CAS  Google Scholar 

  • Poličnik H, Simončič P, Bati F (2008) Monitoring air quality with lichens: a comparison between mapping in forest sites and in open areas. Environ Pollut 151:395–400. doi:10.1016/j.envpol.2007.06.003

    Article  Google Scholar 

  • Purvis W (2000) Lichens. The Natural History Museum, London

    Google Scholar 

  • Rao DN, LeBlanc F (1967) Influence of an iron sintering plant on corticolous epiphytes in Wawa, Ontario. Bryologist 70:141–157

    Article  Google Scholar 

  • Richardson DHS (1991) Lichens as biological indicators. Recent developments. In: Jeffery DW, Madden B (eds) Bioindicators and environmental management. Academic, London, pp 263–272

    Google Scholar 

  • Richardson DHS (1992) Pollution monitoring with lichens, vol 19, Naturalist’s handbooks. Richmond Publishing Co. Ltd, Slough, p 76

    Google Scholar 

  • Riga-Karandinos NA, Karandinos GM (1998) Assessment of air pollution from a lignite power plant in the plain of megalopolis (Greece) using as a biomonitors three species of lichens; impact on some biochemical parameters of lichens. Sci Total Environ 215:167–183

    Article  CAS  Google Scholar 

  • Satya UDK (2009) Correlation among carbon, nitrogen, sulphur and physiological parameters of Rinodina sophodes found at Kanpur city, India. J Hazard Mater. doi:10.1016/j/jhazmat.2009.04.063

  • Satya, Upreti DK, Nayaka S (2005) Shorea robusta – an excellent host tree for lichen growth in India. Curr Sci 89(4):594–595

    Google Scholar 

  • Saxena S, Upreti DK (2004) Lichen flora of Lucknow district with reference to air Pollution studies in the area. Ph.D. thesis, Lucknow University, Lucknow

    Google Scholar 

  • Saxena S, Upreti DK, Sharma N (2007) Heavy metal accumulation in lichens growing in north side of Lucknow city. J Environ Biol 28(1):45–51

    Google Scholar 

  • Seaward MRD (1974) Some observations on heavy metal toxicity and tolerance in lichens. Lichenologist 6:158–164

    Article  Google Scholar 

  • Seaward MRD (1993) Lichens and sulphur dioxide air pollution field studies. Environ Rev 1:73–91

    Article  CAS  Google Scholar 

  • Shirazi AM, Muir PS, McCune B (1996) Environmental factors influencing the distribution of lichen lobaria oregano and L. Pulmonaria. Bryologist 99(1):12–18

    Article  Google Scholar 

  • Shukla V (2007) Lichens as bioindicator of air pollution. Final technical report. Science and Society Division, Department of Science and Technology, New Delhi. Project No. SSD/SS/063/2003

    Google Scholar 

  • Shukla V, Upreti DK (2007a) Heavy metal accumulation in Phaeophyscia hispidula en route to Badrinath, Uttaranchal, India. Environ Monit Assess 131:365–369. doi:10.1007/s10661-006-9481-5

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2007b) Physiological response of the lichen Phaeophyscia hispidula (Ach.) essl. To the urban environment of Pauri and Srinagar (Garhwal), Himalayas. Environ Pollut 150:295–299. doi:10.1016/j.envpol.2007.02.010

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2008a) Effect of metallic pollutants on the physiology of lichen, Pyxine subcinerea Stirton in Garhwal Himalayas. Environ Monit Assess 141:237–243. doi:10.1007/s10661-007-9891-z

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2008b) Role of lichen substances in the thermoprotection of Pyxine subcinerea Stirton in extreme environmental conditions of Garhwal Himalayas. In: Abstracts of the 3rd J & K science congress, Jammu University, Jammu, 26–28th Feb 2008

    Google Scholar 

  • Shukla V, Upreti DK (2009) Polycyclic aromatic hydrocarbon (PAH) accumulation in lichen, Phaeophyscia hispidula of DehraDun city, Garhwal Himalayas. Environ Monit Assess 149(1–4):1–7

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2010) Changing lichen diversity in and around urban settlements of Garhwal Himalayas due to increasing anthropogenic activities. Environ Monit Assess. doi:10.1007/s10661-010-1468-6

  • Shukla V, Upreti DK, Patel DK, Tripathi R (2010) Accumulation of polycyclic aromatic hydrocarbons in some lichens of Garhwal Himalayas, India. Int J Environ Waste Manag 5(1/2):104–113

    Article  CAS  Google Scholar 

  • Singh KP, Sinha GP (2010) Indian lichens an annotated checklist. Botanical Survey of India, Ministry of Environment and Forest, Kolkata

    Google Scholar 

  • Singh AK, Gupta HK, Gupta K, Singh P, Gupta VB, Sharma RC (2007) A comparative study of air pollution in Indian cities. Bull Environ Contam Toxicol 78:411–416

    Article  CAS  Google Scholar 

  • Sloof JE (1995) Lichens as quantitative biomonitors for atmospheric trace-elements deposition, using transplants. Atmos Environ 29:11–20

    Article  CAS  Google Scholar 

  • St. Clair BS, St. Clair LL, Mangelson FN, Weber JD (2002a) Influence of growth form on the accumulation of airborne copper by lichens. Atmos Environ 36:5637–5644

    Article  CAS  Google Scholar 

  • St. Clair BS, St Clair LL, Weber JD, Mangelson FN, Eggett LD (2002b) Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona. Bryologist 105:415–421

    Article  CAS  Google Scholar 

  • Swinscow TDV, Krog H (1988) Macrolichens of East Africa. British Museum (Natural History), London

    Google Scholar 

  • Thormann MN (2006) Lichens as indicators of forest health in Canada. Forest Chron 82(3):335–343

    Article  Google Scholar 

  • Thrower SL (1980) Air pollution and lichens in Hong kong. Lichenologist 12(3):305–311

    Article  CAS  Google Scholar 

  • Tuba Z, Csintalan Z (1993) Bioindication of road motor traffic caused heavy metal pollution by lichen transplants. In: Markert B (ed) Plants as biomonitors indicators for heavy metal in the terrestrial environment. VCH, Weinheim, pp 329–341

    Google Scholar 

  • Upreti DK (1994) Lichens: the great benefactors. Appl Bot Abst 14(3):64–75

    Google Scholar 

  • Upreti DK, Nayaka S (2008) Need for creation of lichen garden and sanctuaries in India. Curr Sci 94(8):976–978

    Google Scholar 

  • Upreti DK, Nayaka S, Bajpai A (2005) Do lichens still grow in Kolkata city? Curr Sci 88(3):338–339

    Google Scholar 

  • van Dobben HF, ter Braak CJF (1999) Ranking of epiphytic lichen sensitivity to air pollution using survey data: a comparison of indicator scales. Lichenologist 31(1):27–39

    Article  Google Scholar 

  • van Herk CM, Aptroot A, van Dobbin HF (2002) Longterm monitoring in the Netherlands suggests that lichen respond to global warming. Lichenologist 34:141–154

    Article  Google Scholar 

  • Vestergaard N, Stephansen U, Rasmussen L, Pilegaard K (1986) Airborne heavy metal pollution in the environment of a Danish steel plant. Water Air Soil Pollut 27:363–377

    Article  CAS  Google Scholar 

  • Wadleigh MA, Blake DM (1999) Tracing sources of atmospheric sulphur using epiphytic lichens. Environ Pollut 106:265–271

    Article  CAS  Google Scholar 

  • Wittig R (1993) General aspects of biomonitoring heavy metals by plants. In: Markert B (ed) Plants as biomonitors – indicators for heavy metals in the terrestrial environment. VHC, Weinheim, pp 3–27

    Google Scholar 

  • Wolterbeek HTh, Garty J, Reis MA, Freitas MC (2003) Biomonitors in use: lichens and metal air pollution. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 377–419

    Google Scholar 

  • World Health Organization (WHO) (2000) Guideline for air quality. WHO Regional Publications, Geneva

    Google Scholar 

Download references

Acknowledgements

Author (V.S.) is thankful to the Vice Chancellor, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow for providing Laboratory facilities. Thanks are due to Ms. Aparna Dwivedi for valuable help. This work has been catalyzed and supported by Scientific and Engineering Research Council, Department of Science & Technology, New Delhi (SR/FT/LS-028/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vertika Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shukla, V., Upreti, D.K. (2012). Air Quality Monitoring with Lichens in India. Heavy Metals and Polycyclic Aromatic Hydrocarbons. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2439-6_7

Download citation

Publish with us

Policies and ethics