Skip to main content

One-Shot Optimization—The VRFT Method

  • Chapter
Data-Driven Controller Design

Abstract

Once the designer has chosen the performance criterion, it must be minimized, which in a data-driven control design will be done using only input-output data collected from the system. It is possible in many situations to perform this minimization in only “one-shot”, that is, with only one batch of data collected in only one operating condition. These “one-shot” solutions, which are the most convenient, are the subject of Chap. 3. The virtual reference feedback tuning method (VRFT, for short) is presented and its statistical properties—consistency, variance—are demonstrated. Its extension to nonminimum phase processes is also presented. A number of simulation studies illustrate the properties of VRFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Again, we leave to the reader to check the details in the literature.

  2. 2.

    Since we are estimating a PI controller, which is formed by a parameter vector of size two, and we are dealing with a noise-free case, we can use the minimum amount of data.

  3. 3.

    The introduction of the filter causes the cost function J VR(ρ) to become flatter, so we have plotted 200J VR(ρ) to make the visual comparison to the other costs easier.

  4. 4.

    Pseudo Random Binary Signal.

  5. 5.

    The ellipses were computed from the data, so this is the sample covariance.

References

  1. K.J. Åström, B. Wittenmark, Adaptive Control, 2nd edn. (Addison-Wesley, Reading, 1995)

    MATH  Google Scholar 

  2. R.R. Bitmead, S. Cheong, System identification based instability detection of noisy ARMA systems, in Proc. 15th IFAC Symposium on System Identification, Saint-Malo, France (IFAC, 2009), pp. 290–295

    Google Scholar 

  3. L. Campestrini, D. Eckhard, M. Gevers, A.S. Bazanella, Virtual reference feedback tuning for non-minimum phase plants. Automatica 47, 1778–1784 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. M.C. Campi, A. Lecchini, S. Savaresi, An application of the virtual reference feedback tuning method to a benchmark problem. Eur. J. Control 9, 66–76 (2003)

    Article  Google Scholar 

  5. M.C. Campi, A. Lecchini, S.M. Savaresi, Virtual reference feedback tuning: A direct method for the design of feedback controllers. Automatica 38, 1337–1346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.C. Campi, S.M. Savaresi, Direct nonlinear control design: The virtual reference feedback tuning (VRFT) approach. Automatica 51, 14–27 (2006)

    MathSciNet  Google Scholar 

  7. M. Gevers, A.S. Bazanella, X. Bombois, L. Mišković, Identification and the information matrix: How to get just sufficiently rich? IEEE Trans. Autom. Control 54(12), 2828–2840 (2009)

    Article  Google Scholar 

  8. G. Goodwin, K.S. Sin, Adaptive Filtering, Prediction and Control (Prentice Hall International, Englewood Cliffs, 2009)

    MATH  Google Scholar 

  9. H. Hjalmarsson, M. Gevers, S. Gunnarsson, O. Lequin, Iterative feedback tuning: Theory and applications. IEEE Control Syst. Mag. 18(4), 26–41 (1998)

    Article  Google Scholar 

  10. A. Karimi, K. van Heusden, D. Bonvin, Non-iterative data-driven controller tuning using the correlation approach, in Proc. European Control Conference, Kos, Greece, 2007

    Google Scholar 

  11. A. Lecchini, M. Gevers, On iterative feedback tuning for non-minimum phase plants, in 41st IEEE Conference on Decision and Control, 2002, pp. 4658–4663

    Google Scholar 

  12. L. Ljung, System Identification—Theory for the User, 2nd edn. (Prentice Hall, New York, 1999)

    Google Scholar 

  13. J. Mårtensson, Geometric Analysis of Stochastic Model Errors in System Identification, PhD thesis, Royal Institute of Technology (KTH), October 2007

    Google Scholar 

  14. J. Mårtensson, H. Hjalmarsson, Variance error quantifications for identified poles and zeros. Automatica 45(11), 2512–2525 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Nakamoto, An application of the virtual reference feedback tuning for an MIMO process, in Proc. SICE Annual Conference, Sapporo, Japan, vol. 3 (IEEE Press, New York, 2005), pp. 2208–2213

    Google Scholar 

  16. A. Sala, A. Esparza, Extensions to “virtual reference feedback tuning: A direct method for the design of feedback controllers”. Automatica 41, 1473–1476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Söderström, P. Stoica, System Identification (Prentice Hall, New York, 1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Sanfelice Bazanella .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sanfelice Bazanella, A., Campestrini, L., Eckhard, D. (2012). One-Shot Optimization—The VRFT Method. In: Data-Driven Controller Design. Communications and Control Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2300-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2300-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2299-6

  • Online ISBN: 978-94-007-2300-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics