Skip to main content

Measuring Carbon in Forests

  • Chapter
  • First Online:
Managing Forest Carbon in a Changing Climate

Abstract

Accurate measurement of carbon stocks and flux in forests is one of the most important scientific bases for successful climate and carbon policy implementation. Currently, there are several methods for estimating forest carbon stocks and flux. We review the four categories of methods for measuring forest biomass and estimating carbon which are currently in use: (i) forest inventory (biomass); (ii) remote sensing (relationship between biomass and land cover); (iii) eddy covariance (direct measurement of CO2 release and uptake); and (iv) the inverse method (relationship among biomass, CO2 flux and CO2 atmospheric transport). These methods all vary in their level of accuracy and the resolution at which data can be obtained. Each technique has its own advantages and disadvantages and there are appropriate circumstances for using each one in measuring CO2 flux and carbon storage for different temporal and spatial scales of evaluation and measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Annex I Parties to the United Nations Framework Convention on Climate Change (UNFCCC) include the industrialized countries that were members of the OECD (Organisation for Economic Co-operation and Develop­ment) in 1992, plus countries with economies in transition (the EIT Parties), including the Russian Federation, the Baltic States, and several Central and Eastern European States.

  2. 2.

    Flux is the rate of flow of energy or particles across a given surface.

References

  • Anderson J, Martin ME, Smith M-L, Dubayah RO, Hofton MA, Hyde P, Peterson BE, Blair JB, Knox RG (2006) The use of waveform LiDAR to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire. Remote Sens Environ 105:248–261

    Article  Google Scholar 

  • Anttila P (2002) Nonparametric estimation of stand volume using spectral and spatial features of aerial photographs and old inventory data. Can J Forest Res 32:1849–1857

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (2008) CarbonTracker. http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/documentation.html. Accessed Apr 2009

  • Aubinet M, Heinesch B, Longdoz B (2002) Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability. Glob Change Biol 8:1053–1071

    Article  Google Scholar 

  • Aubinet M, Berbigier P, Bernhofer CH, Cescatti A, Feigenwinter C, Granier A, Grunwald TH, Havrankova K, Heinesch B, Longdoz B, Marcolla B, Montagnani L, Sedlak P (2005) Comparing CO2 storage and advection conditions at night at different carboeuroflux sites. Bound Layer Meteorol 116:63–94

    Article  Google Scholar 

  • Austin JM, Mackey BG, Niel KPV (2003) Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest. Forest Ecol Manag 176:575–583

    Article  Google Scholar 

  • Baldocchi D (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  CAS  Google Scholar 

  • Baldocchi D, Meyers T (1998) On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. Agric Forest Meteorol 90:1–25

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux ­densities. Bull Am Meteorol Soc 82:2415–2434

    Article  Google Scholar 

  • Ball T, Smith KA, Moncrieff JB (2007) Effect of stand age on greenhouse gas fluxes from a Sitka spruce [Picea sitchensis (Bong.) Carr.] chronosequence on a peaty gley soil. Glob Change Biol 13:2128–2142

    Article  Google Scholar 

  • Barnes BV, Zak DR, Denton SR, Spurr SH (1989) Forest ecology. 4th edition, J Wiley & Sons, New York, 345 p

    Article  Google Scholar 

  • Berger BW, Davis KJ, Yi CX, Bakwin PS, Zhao CL (2001) Long-term carbon dioxide fluxes from a very tall tower in a northern forest: flux measurement methodology. J Atmos Ocean Tech 18:529–542

    Article  Google Scholar 

  • Blackburn GA, Steele CM (1999) Towards the remote sensing of matorral vegetation physiology relationships between spectral reflectance, pigment, and biophysical characteristics of semiarid bushland canopies. Remote Sens Environ 70:278–292

    Article  Google Scholar 

  • Bosveld FC, Beljaars ACM (2001) The impact of sampling rate on eddy-covariance flux estimates. Agric Forest Meteorol 109:39–45

    Article  Google Scholar 

  • Brack C (2009) A brief history of forest inventory. Australian National University, Canberra

    Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. In: FAO Forestry Paper-134, Rome

    Google Scholar 

  • Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116:363–372

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Schroeder P, Kern J (1999) Spatial distribution of biomass in forest of the eastern USA. Forest Ecol Manag 123:81–90

    Article  Google Scholar 

  • Buchwitz M, Schneising O, Burrows JP, Bovensmann H, Reuter M, Notholt J (2007) First direct observation of the atmospheric CO2 year-to-year increase from space. Atmos Chem Phys 7:4249–4256

    Article  CAS  Google Scholar 

  • Canada Centre for Remote Sensing (2008) GlobeSAR-2 Radar Remote Sensing Training package

    Google Scholar 

  • Castel T, Guerra F, Caraglio Y, Houllier F (2002) Retrieval biomass of a large Venezuelan pine plantation using JERS-1 SAR data. Analysis of forest structure impact on radar signature. Remote Sens Environ 79:30–41

    Article  Google Scholar 

  • Chen JM, Chen BZ, Tans P (2007) Deriving daily carbon fluxes from hourly CO2 mixing ratios measured on the WLEF tall tower: an upscaling methodology. J Geophys Res Biogeosci 112:G01015

    Article  CAS  Google Scholar 

  • Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535–545

    Article  Google Scholar 

  • Cross AM, Settle JJ, Drake NA, Paivinen RTM (1991) Subpixel measurement of tropical forest cover using AVHRR data. Int J Remote Sens 12:1119–1129

    Article  Google Scholar 

  • Dong JR, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK (2003) Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sens Environ 84:393–410

    Article  Google Scholar 

  • Drake JB, Knox RG, Dubayah RO, Clark DB, Condit R, Blair JB, Hofton M (2003) Above-ground biomass estimation in closed canopy neotropical forests using LiDAR remote sensing: factors affecting the gene­rality of relationships. Global Ecol Biogeogr 12:147–159

    Article  Google Scholar 

  • Fang J-Y, Wang GG, Liu G-H, Xu S-L (1998) Forest ­biomass of China: an estimate based on the biomass-volume relationship. Ecol Appl 8:1084–1091

    Google Scholar 

  • Fang JY, Chen AP, Peng CH, Zhao SQ, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  PubMed  CAS  Google Scholar 

  • Fazakas Z, Nilsson M, Olsson H (1999) Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agric Forest Meteorol 98:417–425

    Article  Google Scholar 

  • Feigenwinter C, Bernhofer C, Eichelmann U, Heinesch B, Hertel M, Janous D, Kolle O, Lagergren F, Lindroth A, Minerbi S, Moderow U, Molder M, Montagnani L, Queck R, Rebmann C, Vestin P, Yernaux M, Zeri M, Ziegler W, Aubinet M (2008) Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agric Forest Meteorol 148:12–24

    Article  Google Scholar 

  • Finnigan JJ (2004) A re-evaluation of long-term flux measurement techniques – part II: coordinate systems. Bound Layer Meteorol 113:1–41

    Article  Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques – part I: averaging and coordinate rotation. Bound Layer Meteorol 107:1–48

    Article  Google Scholar 

  • Fisher JB, Baldocchi DD, Misson L, Dawson TE, Goldstein AH (2007) What the towers don’t see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiol 27:597–610

    Article  PubMed  Google Scholar 

  • Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys 6:4395–4402

    Article  CAS  Google Scholar 

  • FAO (2000) Food and Agriculture Organization of the United Nations, Rome, FAO Forestry Paper, 140 p

    Google Scholar 

  • Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85:463–474

    Article  Google Scholar 

  • Fraser RH, Li Z (2002) Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sens Environ 82:95–110

    Article  Google Scholar 

  • Freitas JVD (2006) Experiences with FRA 2005. Expert Consultation on Global Forest Resource Assessment: towards FRA 2010. Ministry of Environment Brazil

    Google Scholar 

  • Fuchs H, Magdon P, Kleinn C, Flessa H (2009) Estimating aboveground carbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory. Remote Sens Environ 113:518–531

    Article  Google Scholar 

  • Gash JHC, Culf AD (1996) Applying a linear detrend to eddy correlation data in real time. Bound Layer Meteorol 79:301–306

    Article  Google Scholar 

  • Gehring C, Park S, Denich M (2004) Liana allometric biomass equations for Amazonian primary and secondary forest. Forest Ecol Manag 195:68–83

    Article  Google Scholar 

  • Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys 6:957–974

    Article  CAS  Google Scholar 

  • Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu SR, Nabuurs GJ, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the northern hemisphere. Ecol Appl 12:891–899

    Article  Google Scholar 

  • Gough CM, Vogel CS, Schmid HP, Su HB, Curtis PS (2008) Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric Forest Meteorol 148:158–170

    Article  Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–630

    Article  PubMed  Google Scholar 

  • Hammerle A, Haslwanter A, Schmitt M, Bahn M, Tappeiner U, Cernusca A, Wohlfahrt G (2007) Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Bound Layer Meteorol 122:397–416

    Article  Google Scholar 

  • Han IJ, Liu SM, Wang JM, Wang JD (2003) Study on energy balance over different surfaces. In: Geoscience and Remote Sensing Symposium, 2003. IGARSS ‘03. Proceedings. 2003 IEE International. 5:3208–3210

    Google Scholar 

  • Hanewinkel M (2005) Neural networks for assessing the risk of windthrow on the forest division level: a case study in southwest Germany. Eur J Forest Res 124:243–249

    Article  Google Scholar 

  • Harrell PA, Kasischke ES, Bourgeau-Chavez LL, Haney EM, Norman L, Christensen J (1997) Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data. Remote Sens Environ 59:223–233

    Article  Google Scholar 

  • Haszpra L, Barcza Z, Davis KJ, Tarczay K (2005) Long-term tall tower carbon dioxide flux monitoring over an area of mixed vegetation. Agric Forest Meteorol 132:58–77

    Article  Google Scholar 

  • Heinsch FA, Zhao MS, Running SW, Kimball JS, Nemani RR, Davis KJ, Bolstad PV, Cook BD, Desai AR, Ricciuto DM, Law BE, Oechel WC, Kwon H, Luo HY, Wofsy SC, Dunn AL, Munger JW, Baldocchi DD, Xu LK, Hollinger DY, Richardson AD, Stoy PC, Siqueira MBS, Monson RK, Burns SP, Flanagan LB (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans Geosci Remote Sens 44:1908–1925

    Article  Google Scholar 

  • Holmgren P, Persson R, (2002) Evolution and prospects of global forest assessments. In: Perlis A (ed) Unasylva – No. 210 – Forest assessment and monitoring. FAO

    Google Scholar 

  • Holmgren P, Thuresson T, Holm S (1997) Estimating forest characteristics in scanned aerial photographs with respect to requirements for economic forest management planning. Scand J Forest Res 12:189–199

    Article  Google Scholar 

  • Houghton RA, Ramakrishna K (1999) A review of national emissions inventories from select non-Annex I countries: implications for counting sources and sinks of carbon. Annu Rev Energy Environ 24:571–605

    Article  Google Scholar 

  • IPCC (2007) Climate change: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 104 p

    Google Scholar 

  • Iverson LR, Cook EA, Graham RL (1994) Regional forest cover estimation via remote sensing: the calibration center concept. Landscape Ecol 9:159–174

    Article  Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. Forest Sci 49:12–35

    Google Scholar 

  • Krol M, Houweling S, Bregman B, van den Broek M, Segers A, van Velthoven P, Peters W, Dentener F, Bergamaschi P (2005) The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos Chem Phys 5:417–432

    Article  CAS  Google Scholar 

  • Laporte N, Justice C, Kendall J (1995) Mapping the dense humid forest of Cameroon and Zaire using AVHRR satellite data. Int J Remote Sens 16:1127–1145

    Article  Google Scholar 

  • LeBlanc JW (2009) What do we own: understanding forest inventory. University of California Cooperative Extension

    Google Scholar 

  • Lee XH (2004) A model for scalar advection inside canopies and application to footprint investigation. Agric Forest Meteorol 127:131–141

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA, Harding D (1999) LiDAR remote sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests. Remote Sens Environ 70:339–361

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) LiDAR remote sensing for ecosystem studies. Bioscience 52:19–30

    Article  Google Scholar 

  • Levesque J, King DJ (2003) Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health. Remote Sens Environ 84:589–609

    Article  Google Scholar 

  • Li ZQ, Yu GR, Wen XF, Zhang LM, Ren CY, Fu YL (2005) Energy balance closure at ChinaFLUX sites. Sci China Ser D 48:51–62

    Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27:1297–1328

    Article  Google Scholar 

  • Lu D, Batistella M (2005) Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon. Acta Amazonica 35:249–257

    Article  Google Scholar 

  • Luckman A, Baker J, Honzák M, Lucas R (1998) Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics. Remote Sens Environ 63:126–139

    Article  Google Scholar 

  • Luo Y, Medlyn B, Hui D, Ellsworth D, Reynolds J, Katul G (2001) Gross primary productivity in duke forest: modeling synthesis of CO2 experiment and eddy-flux data. Ecol Appl 11:239–252

    Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichsteins M, Papale D, Piao SL, Schulzes ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhoffer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grunwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolar P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537

    Article  Google Scholar 

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric Forest Meteorol 113:121–144

    Article  Google Scholar 

  • Moore CJ (1986) Frequency-response corrections for eddy-correlation systems. Bound Layer Meteorol 37:17–35

    Article  Google Scholar 

  • Muukkonen P, Heiskanen J (2005) Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. Remote Sens Environ 99:434–447

    Article  Google Scholar 

  • Muukkonen P, Heiskanen J (2007) Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories. Remote Sens Environ 107:617–624

    Article  Google Scholar 

  • Nelson R, Oderwald R, Gregoire TG (1997) Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass. Remote Sens Environ 60:311–326

    Article  Google Scholar 

  • Niklas K (1994) Plant allometry: the scaling of form and process. The University of Chicago Press, Chicago

    Google Scholar 

  • Owen KE, Tenhunen J, Reichstein M, Wang Q, Falge E, Geyer R, Xiao XM, Stoy P, Ammann C, Arain A, Aubinet M, Aurela M, Bernhofer C, Chojnicki BH, Granier A, Gruenwald T, Hadley J, Heinesch B, Hollinger D, Knohl A, Kutsch W, Lohila A, Meyers T, Moors E, Moureaux C, Pilegaard K, Saigusa N, Verma S, Vesala T, Vogel C (2007) Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Glob Change Biol 13:734–760

    Article  Google Scholar 

  • Patenaude G, Milne R, Dawson TP (2005) Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto protocol. Environ Sci Policy 8:161–178

    Article  CAS  Google Scholar 

  • Patra PK, Gurney KR, Denning AS, Maksyutov S, Nakazawa T, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan SM, Fung I, Gloor M, Heimann M, Higuchi K, John J, Law RM, Maki T, Pak BC, Peylin P, Prather M, Rayner PJ, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2006) Sensitivity of inverse estimation of annual mean CO2 sources and sinks to ocean-only sites versus all-sites observational networks. Geophys Res Lett 33:L05814

    Article  CAS  Google Scholar 

  • Peters W, Krol MC, Dlugokencky EJ, Dentener FJ, Bergamaschi P, Dutton G, von Velthoven P, Miller JB, Bruhwiler L, Tans PP (2004) Toward regional-scale modeling using the two-way nested global model TM5: characterization of transport using SF6. J Geophys Res Atmos 109:D19314

    Article  Google Scholar 

  • Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Petron G, Hirsch AI, Worthy DEJ, van der Werf GR, Randerson JT, Wennberg PO, Krol MC, Tans PP (2007) An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci USA 104:18925–18930

    Article  PubMed  CAS  Google Scholar 

  • Pinnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques - part I: averaging and coordinate rotation. Bound Layer Meteorol 107:1–48

    Article  Google Scholar 

  • Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577

    Article  Google Scholar 

  • Ranson KJ, Sun G (1994) Mapping biomass of a northern forest using multifrequency SAR data. IEEE Trans Geosci Remote Sens 32:388–396

    Article  Google Scholar 

  • Rayner PJ, O’Brien DM (2001) The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys Res Lett 28:175–178

    Article  CAS  Google Scholar 

  • Reese H, Nilsson M, Sandström P, Olsson H (2002) Applications using estimates of forest parameters derived from satellite and forest inventory data. Comput Electron Agric 37:37–55

    Article  Google Scholar 

  • Rodenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys 3:1919–1964

    Article  Google Scholar 

  • Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens Environ 70:108–127

    Article  Google Scholar 

  • Sasai T, Okamoto K, Hiyama T, Yamaguchi Y (2007) Comparing terrestrial carbon fluxes from the scale of a flux tower to the global scale. Ecol Model 208:135–144

    Article  Google Scholar 

  • Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric Forest Meteorol 87:179–200

    Article  Google Scholar 

  • Schroeder P, Brown S, Mo JM, Birdsey R, Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Sci 43:424–434

    Google Scholar 

  • Smith JE, Heath LS (2004) Carbon stocks and projections on public forestlands in the United States, 1952–2040. Environ Manage 33:433–442

    Article  PubMed  Google Scholar 

  • Smith J, Heath L, Jenkins J (2002) Forest volume-to-biomass models and estimates of mass for live and standing dead trees of U.S. forests. In: General Technical Report NE-298. Northeastern Research Station, p 62

    Google Scholar 

  • Soegaard H, Nordstroem C, Friborg T, Hansen BU, Christensen TR, Bay C (2000) Trace gas exchange in a high-arctic valley 3. integrating and scaling CO2 fluxes from canopy to landscape using flux data, footprint modeling, and remote sensing. Global Biogeochem Cycles 14:725–744

    Article  CAS  Google Scholar 

  • Stauch VJ, Jarvis AJ (2006) A semi-parametric gap-filling model for eddy covariance CO2 flux time series data. Glob Change Biol 12:1707–1716

    Article  Google Scholar 

  • Steininger MK (2000) Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. Int J Remote Sens 21:1139–1157

    Article  Google Scholar 

  • Su HB, Schmid HP, Grimmond CSB, Vogel CS, Curtis PS (2008) An assessment of observed vertical flux divergence in long-term eddy-covariance measurements over two Midwestern forest ecosystems. Agric Forest Meteorol 148:186–205

    Article  Google Scholar 

  • Sun JL, Desjardins R, Mahrt L, MacPherson I (1998) Transport of carbon dioxide, water vapor, and ozone by turbulence and local circulations. J Geophys Res Atmos 103:25873–25885

    Article  CAS  Google Scholar 

  • Sun G, Ranson KJ, Kharuk VI (2002) Radiometric slope correction for forest biomass estimation from SAR data in the Western Sayani Mountains, Siberia. Remote Sens Environ 79:279–287

    Article  Google Scholar 

  • Thenkabail PS (2003) Biophysical and yield information for precision farming from near-real-time and historical Landsat TM images. Int J Remote Sens 24:2879–2904

    Article  Google Scholar 

  • Thenkabail PS, Enclonab EA, Ashton MS, Meer BVD (2004a) Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens Environ 91:354–376

    Article  Google Scholar 

  • Thenkabail PS, Stucky N, Griscom BW, Ashton MS, Diels J, Van der Meer B, Enclona E (2004b) Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. Int J Remote Sens 25:5447–5472

    Article  Google Scholar 

  • Tomppo E, Nilsson M, Rosengren M, Aalto P, Kennedy P (2002) Simultaneous use of Landsat-TM and IRS-1 C WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sens Environ 82:156–171

    Article  Google Scholar 

  • UNFCCC (1997) Kyoto protocol to the United Nations Framework convention on climate change

    Google Scholar 

  • Velasco E, Pressley S, Allwine E, Westberg H, Lamb B (2005) Measurements of CO2 fluxes from the Mexico City urban landscape. Atmos Environ 39:7433–7446

    Article  CAS  Google Scholar 

  • Wang S, Chen JM, Ju WM, Feng X, Chen M, Chen P, Yu G (2007a) Carbon sinks and sources in China’s forests during 1901–2001. J Environ Manag 85:524–537

    Article  CAS  Google Scholar 

  • Wang YP, Baldocchi D, Leuning R, Falge E, Vesala T (2007b) Estimating parameters in a land-surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Glob Change Biol 13:652–670

    Article  Google Scholar 

  • Wardoyo (2008) National forestry inventory Indonesia. Ministry of Forestry, Indonesia

    Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric Forest Meteorol 113:223–243

    Article  Google Scholar 

  • Woodbury PB, Smith JE, Heath LS (2007) Carbon sequestration in the US forest sector from 1990 to 2010. Forest Ecol Manag 241:14–27

    Article  Google Scholar 

  • Wulder MA, Seemann D (2003) Forest inventory height update through the integration of LiDAR data with segmented Landsat imagery. Can J Remote Sens 29:536–543

    Article  Google Scholar 

  • Wulder MA, Hall R, Coops N, Franklin S (2004) High spatial resolution remotely sensed data for ecosystem characterization. Bioscience 54:511–521

    Article  Google Scholar 

  • Wulder MA, White JC, Fournier RA, Luther JE, Magnussen S (2008) Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS. Sensors 8:529–560

    Article  Google Scholar 

  • Yamaguchi Y, Kahle AB, Tsu H, Kawakami T, Pniel M (1998) Overview of advanced Spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36:1062–1071

    Article  Google Scholar 

  • Yang FH, Ichii K, White MA, Hashimoto H, Michaelis AR, Votava P, Zhu AX, Huete A, Running SW, Nemani RR (2007) Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach. Remote Sens Environ 110:109–122

    Article  Google Scholar 

  • Yuan WP, Liu S, Zhou GS, Zhou GY, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu Y, Law BE, Stoy PC, Vesala T, Wofsy SC (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric Forest Meteorol 143:189–207

    Article  Google Scholar 

  • Zheng D, Rademacher J, Chena J, Crowc T, Breseea M, Moined JL, Ryua S-R (2004) Estimating aboveground biomass using Landsat 7 ETM  +  data across a managed landscape in northern Wisconsin, USA. Remote Sens Environ 93:402–411

    Article  Google Scholar 

  • Zheng DL, Heath LS, Ducey MJ (2007a) Forest biomass estimated from MODIS and FIA data in the Lake States: MN, WI and MI, USA. Forestry 80:265–278

    Article  Google Scholar 

  • Zheng G, Chen JM, Tian QJ, Ju WM, Xia XQ (2007b) Combining remote sensing imagery and forest age inventory for biomass mapping. J Environ Manag 85:616–623

    Article  CAS  Google Scholar 

  • Zianis D, Mencuccini M (2004) On simplifying allometric analyses of forest biomass. Forest Ecol Manag 187:311–332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Ashton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhang, X., Zhao, Y., Ashton, M.S., Lee, X. (2012). Measuring Carbon in Forests. In: Ashton, M., Tyrrell, M., Spalding, D., Gentry, B. (eds) Managing Forest Carbon in a Changing Climate. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2232-3_7

Download citation

Publish with us

Policies and ethics